MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnval Structured version   Visualization version   GIF version

Theorem psgnval 19540
Description: Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnval (𝑃 ∈ dom 𝑁 → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝑤,𝑠,𝐺   𝑁,𝑠,𝑤   𝑃,𝑠,𝑤   𝑇,𝑠,𝑤   𝐷,𝑠,𝑤

Proof of Theorem psgnval
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2739 . . . . 5 (𝑡 = 𝑃 → (𝑡 = (𝐺 Σg 𝑤) ↔ 𝑃 = (𝐺 Σg 𝑤)))
21anbi1d 631 . . . 4 (𝑡 = 𝑃 → ((𝑡 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
32rexbidv 3177 . . 3 (𝑡 = 𝑃 → (∃𝑤 ∈ Word 𝑇(𝑡 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
43iotabidv 6547 . 2 (𝑡 = 𝑃 → (℩𝑠𝑤 ∈ Word 𝑇(𝑡 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
5 psgnval.g . . 3 𝐺 = (SymGrp‘𝐷)
6 eqid 2735 . . 3 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2735 . . . . 5 {𝑥 ∈ (Base‘𝐺) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝐺) ∣ dom (𝑥 ∖ I ) ∈ Fin}
8 psgnval.n . . . . 5 𝑁 = (pmSgn‘𝐷)
95, 6, 7, 8psgnfn 19534 . . . 4 𝑁 Fn {𝑥 ∈ (Base‘𝐺) ∣ dom (𝑥 ∖ I ) ∈ Fin}
109fndmi 6673 . . 3 dom 𝑁 = {𝑥 ∈ (Base‘𝐺) ∣ dom (𝑥 ∖ I ) ∈ Fin}
11 psgnval.t . . 3 𝑇 = ran (pmTrsp‘𝐷)
125, 6, 10, 11, 8psgnfval 19533 . 2 𝑁 = (𝑡 ∈ dom 𝑁 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑡 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
13 iotaex 6536 . 2 (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ V
144, 12, 13fvmpt 7016 1 (𝑃 ∈ dom 𝑁 → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  cdif 3960   I cid 5582  dom cdm 5689  ran crn 5690  cio 6514  cfv 6563  (class class class)co 7431  Fincfn 8984  1c1 11154  -cneg 11491  cexp 14099  chash 14366  Word cword 14549  Basecbs 17245   Σg cgsu 17487  SymGrpcsymg 19401  pmTrspcpmtr 19474  pmSgncpsgn 19522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-slot 17216  df-ndx 17228  df-base 17246  df-psgn 19524
This theorem is referenced by:  psgnvali  19541  psgnvalii  19542  psgnvalfi  19547  psgnprfval  19554
  Copyright terms: Public domain W3C validator