MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnval Structured version   Visualization version   GIF version

Theorem psgnval 19437
Description: Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnval (𝑃 ∈ dom 𝑁 → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝑤,𝑠,𝐺   𝑁,𝑠,𝑤   𝑃,𝑠,𝑤   𝑇,𝑠,𝑤   𝐷,𝑠,𝑤

Proof of Theorem psgnval
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2733 . . . . 5 (𝑡 = 𝑃 → (𝑡 = (𝐺 Σg 𝑤) ↔ 𝑃 = (𝐺 Σg 𝑤)))
21anbi1d 631 . . . 4 (𝑡 = 𝑃 → ((𝑡 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
32rexbidv 3157 . . 3 (𝑡 = 𝑃 → (∃𝑤 ∈ Word 𝑇(𝑡 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
43iotabidv 6495 . 2 (𝑡 = 𝑃 → (℩𝑠𝑤 ∈ Word 𝑇(𝑡 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
5 psgnval.g . . 3 𝐺 = (SymGrp‘𝐷)
6 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2729 . . . . 5 {𝑥 ∈ (Base‘𝐺) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝐺) ∣ dom (𝑥 ∖ I ) ∈ Fin}
8 psgnval.n . . . . 5 𝑁 = (pmSgn‘𝐷)
95, 6, 7, 8psgnfn 19431 . . . 4 𝑁 Fn {𝑥 ∈ (Base‘𝐺) ∣ dom (𝑥 ∖ I ) ∈ Fin}
109fndmi 6622 . . 3 dom 𝑁 = {𝑥 ∈ (Base‘𝐺) ∣ dom (𝑥 ∖ I ) ∈ Fin}
11 psgnval.t . . 3 𝑇 = ran (pmTrsp‘𝐷)
125, 6, 10, 11, 8psgnfval 19430 . 2 𝑁 = (𝑡 ∈ dom 𝑁 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑡 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
13 iotaex 6484 . 2 (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ V
144, 12, 13fvmpt 6968 1 (𝑃 ∈ dom 𝑁 → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  cdif 3911   I cid 5532  dom cdm 5638  ran crn 5639  cio 6462  cfv 6511  (class class class)co 7387  Fincfn 8918  1c1 11069  -cneg 11406  cexp 14026  chash 14295  Word cword 14478  Basecbs 17179   Σg cgsu 17403  SymGrpcsymg 19299  pmTrspcpmtr 19371  pmSgncpsgn 19419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-slot 17152  df-ndx 17164  df-base 17180  df-psgn 19421
This theorem is referenced by:  psgnvali  19438  psgnvalii  19439  psgnvalfi  19444  psgnprfval  19451
  Copyright terms: Public domain W3C validator