![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem4 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem8 47669. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
iscnrm3rlem4.3 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
iscnrm3rlem4.4 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) |
Ref | Expression |
---|---|
iscnrm3rlem4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdi 4284 | . . . . 5 ⊢ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇))) |
3 | iscnrm3rlem4.3 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
4 | 3 | difeq2d 4123 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅)) |
5 | dif0 4373 | . . . . 5 ⊢ ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)) | |
6 | 4, 5 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))) |
7 | iscnrm3rlem4.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) | |
8 | iscnrm3rlem4.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
9 | eqid 2731 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | sscls 22781 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
11 | 7, 8, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
12 | df-ss 3966 | . . . . 5 ⊢ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆) |
14 | 2, 6, 13 | 3eqtrd 2775 | . . 3 ⊢ (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆) |
15 | df-ss 3966 | . . 3 ⊢ (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆) | |
16 | 14, 15 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) |
17 | iscnrm3rlem4.4 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) | |
18 | 16, 17 | sstrd 3993 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∖ cdif 3946 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 ∪ cuni 4909 ‘cfv 6544 Topctop 22616 clsccl 22743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-top 22617 df-cld 22744 df-cls 22746 |
This theorem is referenced by: iscnrm3rlem8 47669 |
Copyright terms: Public domain | W3C validator |