Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem4 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem8 46241. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
iscnrm3rlem4.3 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
iscnrm3rlem4.4 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) |
Ref | Expression |
---|---|
iscnrm3rlem4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdi 4217 | . . . . 5 ⊢ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇))) |
3 | iscnrm3rlem4.3 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
4 | 3 | difeq2d 4057 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅)) |
5 | dif0 4306 | . . . . 5 ⊢ ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)) | |
6 | 4, 5 | eqtrdi 2794 | . . . 4 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))) |
7 | iscnrm3rlem4.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) | |
8 | iscnrm3rlem4.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
9 | eqid 2738 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | sscls 22207 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
11 | 7, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
12 | df-ss 3904 | . . . . 5 ⊢ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆) |
14 | 2, 6, 13 | 3eqtrd 2782 | . . 3 ⊢ (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆) |
15 | df-ss 3904 | . . 3 ⊢ (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆) | |
16 | 14, 15 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) |
17 | iscnrm3rlem4.4 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) | |
18 | 16, 17 | sstrd 3931 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 clsccl 22169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-cld 22170 df-cls 22172 |
This theorem is referenced by: iscnrm3rlem8 46241 |
Copyright terms: Public domain | W3C validator |