Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem4 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem4 48924
Description: Lemma for iscnrm3rlem8 48928. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem4.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem4.2 (𝜑𝑆 𝐽)
iscnrm3rlem4.3 (𝜑 → (𝑆𝑇) = ∅)
iscnrm3rlem4.4 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
Assertion
Ref Expression
iscnrm3rlem4 (𝜑𝑆𝑁)

Proof of Theorem iscnrm3rlem4
StepHypRef Expression
1 indifdi 4253 . . . . 5 (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇))
21a1i 11 . . . 4 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)))
3 iscnrm3rlem4.3 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
43difeq2d 4085 . . . . 5 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅))
5 dif0 4337 . . . . 5 ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))
64, 5eqtrdi 2780 . . . 4 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)))
7 iscnrm3rlem4.1 . . . . . 6 (𝜑𝐽 ∈ Top)
8 iscnrm3rlem4.2 . . . . . 6 (𝜑𝑆 𝐽)
9 eqid 2729 . . . . . . 7 𝐽 = 𝐽
109sscls 22976 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
117, 8, 10syl2anc 584 . . . . 5 (𝜑𝑆 ⊆ ((cls‘𝐽)‘𝑆))
12 dfss2 3929 . . . . 5 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
1311, 12sylib 218 . . . 4 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
142, 6, 133eqtrd 2768 . . 3 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
15 dfss2 3929 . . 3 (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
1614, 15sylibr 234 . 2 (𝜑𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇))
17 iscnrm3rlem4.4 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
1816, 17sstrd 3954 1 (𝜑𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3908  cin 3910  wss 3911  c0 4292   cuni 4867  cfv 6499  Topctop 22813  clsccl 22938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-top 22814  df-cld 22939  df-cls 22941
This theorem is referenced by:  iscnrm3rlem8  48928
  Copyright terms: Public domain W3C validator