Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem4 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem8 46129. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
iscnrm3rlem4.3 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
iscnrm3rlem4.4 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) |
Ref | Expression |
---|---|
iscnrm3rlem4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdi 4214 | . . . . 5 ⊢ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇))) |
3 | iscnrm3rlem4.3 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
4 | 3 | difeq2d 4053 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅)) |
5 | dif0 4303 | . . . . 5 ⊢ ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)) | |
6 | 4, 5 | eqtrdi 2795 | . . . 4 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))) |
7 | iscnrm3rlem4.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) | |
8 | iscnrm3rlem4.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
9 | eqid 2738 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | sscls 22115 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
11 | 7, 8, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
12 | df-ss 3900 | . . . . 5 ⊢ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆) |
14 | 2, 6, 13 | 3eqtrd 2782 | . . 3 ⊢ (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆) |
15 | df-ss 3900 | . . 3 ⊢ (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆) | |
16 | 14, 15 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) |
17 | iscnrm3rlem4.4 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) | |
18 | 16, 17 | sstrd 3927 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 clsccl 22077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-cld 22078 df-cls 22080 |
This theorem is referenced by: iscnrm3rlem8 46129 |
Copyright terms: Public domain | W3C validator |