Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem4 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem4 48931
Description: Lemma for iscnrm3rlem8 48935. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem4.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem4.2 (𝜑𝑆 𝐽)
iscnrm3rlem4.3 (𝜑 → (𝑆𝑇) = ∅)
iscnrm3rlem4.4 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
Assertion
Ref Expression
iscnrm3rlem4 (𝜑𝑆𝑁)

Proof of Theorem iscnrm3rlem4
StepHypRef Expression
1 indifdi 4257 . . . . 5 (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇))
21a1i 11 . . . 4 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)))
3 iscnrm3rlem4.3 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
43difeq2d 4089 . . . . 5 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅))
5 dif0 4341 . . . . 5 ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))
64, 5eqtrdi 2780 . . . 4 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)))
7 iscnrm3rlem4.1 . . . . . 6 (𝜑𝐽 ∈ Top)
8 iscnrm3rlem4.2 . . . . . 6 (𝜑𝑆 𝐽)
9 eqid 2729 . . . . . . 7 𝐽 = 𝐽
109sscls 22943 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
117, 8, 10syl2anc 584 . . . . 5 (𝜑𝑆 ⊆ ((cls‘𝐽)‘𝑆))
12 dfss2 3932 . . . . 5 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
1311, 12sylib 218 . . . 4 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
142, 6, 133eqtrd 2768 . . 3 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
15 dfss2 3932 . . 3 (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
1614, 15sylibr 234 . 2 (𝜑𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇))
17 iscnrm3rlem4.4 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
1816, 17sstrd 3957 1 (𝜑𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3911  cin 3913  wss 3914  c0 4296   cuni 4871  cfv 6511  Topctop 22780  clsccl 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-cld 22906  df-cls 22908
This theorem is referenced by:  iscnrm3rlem8  48935
  Copyright terms: Public domain W3C validator