Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem4 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem4 47665
Description: Lemma for iscnrm3rlem8 47669. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem4.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem4.2 (𝜑𝑆 𝐽)
iscnrm3rlem4.3 (𝜑 → (𝑆𝑇) = ∅)
iscnrm3rlem4.4 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
Assertion
Ref Expression
iscnrm3rlem4 (𝜑𝑆𝑁)

Proof of Theorem iscnrm3rlem4
StepHypRef Expression
1 indifdi 4284 . . . . 5 (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇))
21a1i 11 . . . 4 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)))
3 iscnrm3rlem4.3 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
43difeq2d 4123 . . . . 5 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅))
5 dif0 4373 . . . . 5 ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))
64, 5eqtrdi 2787 . . . 4 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)))
7 iscnrm3rlem4.1 . . . . . 6 (𝜑𝐽 ∈ Top)
8 iscnrm3rlem4.2 . . . . . 6 (𝜑𝑆 𝐽)
9 eqid 2731 . . . . . . 7 𝐽 = 𝐽
109sscls 22781 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
117, 8, 10syl2anc 583 . . . . 5 (𝜑𝑆 ⊆ ((cls‘𝐽)‘𝑆))
12 df-ss 3966 . . . . 5 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
1311, 12sylib 217 . . . 4 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
142, 6, 133eqtrd 2775 . . 3 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
15 df-ss 3966 . . 3 (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
1614, 15sylibr 233 . 2 (𝜑𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇))
17 iscnrm3rlem4.4 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
1816, 17sstrd 3993 1 (𝜑𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cdif 3946  cin 3948  wss 3949  c0 4323   cuni 4909  cfv 6544  Topctop 22616  clsccl 22743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-top 22617  df-cld 22744  df-cls 22746
This theorem is referenced by:  iscnrm3rlem8  47669
  Copyright terms: Public domain W3C validator