Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem4 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem4 46237
Description: Lemma for iscnrm3rlem8 46241. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem4.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem4.2 (𝜑𝑆 𝐽)
iscnrm3rlem4.3 (𝜑 → (𝑆𝑇) = ∅)
iscnrm3rlem4.4 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
Assertion
Ref Expression
iscnrm3rlem4 (𝜑𝑆𝑁)

Proof of Theorem iscnrm3rlem4
StepHypRef Expression
1 indifdi 4217 . . . . 5 (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇))
21a1i 11 . . . 4 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)))
3 iscnrm3rlem4.3 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
43difeq2d 4057 . . . . 5 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅))
5 dif0 4306 . . . . 5 ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))
64, 5eqtrdi 2794 . . . 4 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)))
7 iscnrm3rlem4.1 . . . . . 6 (𝜑𝐽 ∈ Top)
8 iscnrm3rlem4.2 . . . . . 6 (𝜑𝑆 𝐽)
9 eqid 2738 . . . . . . 7 𝐽 = 𝐽
109sscls 22207 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
117, 8, 10syl2anc 584 . . . . 5 (𝜑𝑆 ⊆ ((cls‘𝐽)‘𝑆))
12 df-ss 3904 . . . . 5 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
1311, 12sylib 217 . . . 4 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
142, 6, 133eqtrd 2782 . . 3 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
15 df-ss 3904 . . 3 (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
1614, 15sylibr 233 . 2 (𝜑𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇))
17 iscnrm3rlem4.4 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
1816, 17sstrd 3931 1 (𝜑𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cdif 3884  cin 3886  wss 3887  c0 4256   cuni 4839  cfv 6433  Topctop 22042  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-cls 22172
This theorem is referenced by:  iscnrm3rlem8  46241
  Copyright terms: Public domain W3C validator