Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem4 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem4 45676
Description: Lemma for iscnrm3rlem8 45680. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem4.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem4.2 (𝜑𝑆 𝐽)
iscnrm3rlem4.3 (𝜑 → (𝑆𝑇) = ∅)
iscnrm3rlem4.4 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
Assertion
Ref Expression
iscnrm3rlem4 (𝜑𝑆𝑁)

Proof of Theorem iscnrm3rlem4
StepHypRef Expression
1 indifdi 4190 . . . . 5 (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇))
21a1i 11 . . . 4 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)))
3 iscnrm3rlem4.3 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
43difeq2d 4030 . . . . 5 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅))
5 dif0 4273 . . . . 5 ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))
64, 5eqtrdi 2809 . . . 4 (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)))
7 iscnrm3rlem4.1 . . . . . 6 (𝜑𝐽 ∈ Top)
8 iscnrm3rlem4.2 . . . . . 6 (𝜑𝑆 𝐽)
9 eqid 2758 . . . . . . 7 𝐽 = 𝐽
109sscls 21769 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
117, 8, 10syl2anc 587 . . . . 5 (𝜑𝑆 ⊆ ((cls‘𝐽)‘𝑆))
12 df-ss 3877 . . . . 5 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
1311, 12sylib 221 . . . 4 (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆)
142, 6, 133eqtrd 2797 . . 3 (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
15 df-ss 3877 . . 3 (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆)
1614, 15sylibr 237 . 2 (𝜑𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇))
17 iscnrm3rlem4.4 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)
1816, 17sstrd 3904 1 (𝜑𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cdif 3857  cin 3859  wss 3860  c0 4227   cuni 4801  cfv 6340  Topctop 21606  clsccl 21731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-top 21607  df-cld 21732  df-cls 21734
This theorem is referenced by:  iscnrm3rlem8  45680
  Copyright terms: Public domain W3C validator