| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3rlem8 48901. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| iscnrm3rlem4.3 | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| iscnrm3rlem4.4 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) |
| Ref | Expression |
|---|---|
| iscnrm3rlem4 | ⊢ (𝜑 → 𝑆 ⊆ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indifdi 4274 | . . . . 5 ⊢ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇))) |
| 3 | iscnrm3rlem4.3 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | |
| 4 | 3 | difeq2d 4106 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) = ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅)) |
| 5 | dif0 4358 | . . . . 5 ⊢ ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ ∅) = (𝑆 ∩ ((cls‘𝐽)‘𝑆)) | |
| 6 | 4, 5 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑆)) ∖ (𝑆 ∩ 𝑇)) = (𝑆 ∩ ((cls‘𝐽)‘𝑆))) |
| 7 | iscnrm3rlem4.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 8 | iscnrm3rlem4.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
| 9 | eqid 2736 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | sscls 22999 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| 11 | 7, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| 12 | dfss2 3949 | . . . . 5 ⊢ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ↔ (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆) | |
| 13 | 11, 12 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑆 ∩ ((cls‘𝐽)‘𝑆)) = 𝑆) |
| 14 | 2, 6, 13 | 3eqtrd 2775 | . . 3 ⊢ (𝜑 → (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆) |
| 15 | dfss2 3949 | . . 3 ⊢ (𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇) ↔ (𝑆 ∩ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) = 𝑆) | |
| 16 | 14, 15 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (((cls‘𝐽)‘𝑆) ∖ 𝑇)) |
| 17 | iscnrm3rlem4.4 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁) | |
| 18 | 16, 17 | sstrd 3974 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ‘cfv 6536 Topctop 22836 clsccl 22961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-top 22837 df-cld 22962 df-cls 22964 |
| This theorem is referenced by: iscnrm3rlem8 48901 |
| Copyright terms: Public domain | W3C validator |