![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem5 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem6 48614. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
iscnrm3rlem5.3 | ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) |
Ref | Expression |
---|---|
iscnrm3rlem5 | ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3rlem4.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | iscnrm3rlem4.2 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
3 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | clscld 23068 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
5 | 1, 2, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
6 | iscnrm3rlem5.3 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) | |
7 | 3 | clscld 23068 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) |
8 | 1, 6, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) |
9 | incld 23064 | . . 3 ⊢ ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽)) | |
10 | 5, 8, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽)) |
11 | 3 | cldopn 23052 | . 2 ⊢ ((((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
12 | 10, 11 | syl 17 | 1 ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6568 Topctop 22912 Clsdccld 23037 clsccl 23039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-top 22913 df-cld 23040 df-cls 23042 |
This theorem is referenced by: iscnrm3rlem6 48614 |
Copyright terms: Public domain | W3C validator |