| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3rlem6 48826. (Contributed by Zhi Wang, 5-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| iscnrm3rlem5.3 | ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) |
| Ref | Expression |
|---|---|
| iscnrm3rlem5 | ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnrm3rlem4.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | iscnrm3rlem4.2 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2734 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | clscld 23002 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 6 | iscnrm3rlem5.3 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) | |
| 7 | 3 | clscld 23002 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) |
| 8 | 1, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) |
| 9 | incld 22998 | . . 3 ⊢ ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽)) | |
| 10 | 5, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽)) |
| 11 | 3 | cldopn 22986 | . 2 ⊢ ((((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
| 12 | 10, 11 | syl 17 | 1 ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∪ cuni 4887 ‘cfv 6541 Topctop 22848 Clsdccld 22971 clsccl 22973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-top 22849 df-cld 22974 df-cls 22976 |
| This theorem is referenced by: iscnrm3rlem6 48826 |
| Copyright terms: Public domain | W3C validator |