Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem5 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem5 46238
Description: Lemma for iscnrm3rlem6 46239. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem4.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem4.2 (𝜑𝑆 𝐽)
iscnrm3rlem5.3 (𝜑𝑇 𝐽)
Assertion
Ref Expression
iscnrm3rlem5 (𝜑 → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽)

Proof of Theorem iscnrm3rlem5
StepHypRef Expression
1 iscnrm3rlem4.1 . . . 4 (𝜑𝐽 ∈ Top)
2 iscnrm3rlem4.2 . . . 4 (𝜑𝑆 𝐽)
3 eqid 2738 . . . . 5 𝐽 = 𝐽
43clscld 22198 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
51, 2, 4syl2anc 584 . . 3 (𝜑 → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
6 iscnrm3rlem5.3 . . . 4 (𝜑𝑇 𝐽)
73clscld 22198 . . . 4 ((𝐽 ∈ Top ∧ 𝑇 𝐽) → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽))
81, 6, 7syl2anc 584 . . 3 (𝜑 → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽))
9 incld 22194 . . 3 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽))
105, 8, 9syl2anc 584 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽))
113cldopn 22182 . 2 ((((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽) → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽)
1210, 11syl 17 1 (𝜑 → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cdif 3884  cin 3886  wss 3887   cuni 4839  cfv 6433  Topctop 22042  Clsdccld 22167  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-cls 22172
This theorem is referenced by:  iscnrm3rlem6  46239
  Copyright terms: Public domain W3C validator