Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem5 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem5 47665
Description: Lemma for iscnrm3rlem6 47666. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem4.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem4.2 (𝜑𝑆 𝐽)
iscnrm3rlem5.3 (𝜑𝑇 𝐽)
Assertion
Ref Expression
iscnrm3rlem5 (𝜑 → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽)

Proof of Theorem iscnrm3rlem5
StepHypRef Expression
1 iscnrm3rlem4.1 . . . 4 (𝜑𝐽 ∈ Top)
2 iscnrm3rlem4.2 . . . 4 (𝜑𝑆 𝐽)
3 eqid 2731 . . . . 5 𝐽 = 𝐽
43clscld 22772 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
51, 2, 4syl2anc 583 . . 3 (𝜑 → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
6 iscnrm3rlem5.3 . . . 4 (𝜑𝑇 𝐽)
73clscld 22772 . . . 4 ((𝐽 ∈ Top ∧ 𝑇 𝐽) → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽))
81, 6, 7syl2anc 583 . . 3 (𝜑 → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽))
9 incld 22768 . . 3 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽))
105, 8, 9syl2anc 583 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽))
113cldopn 22756 . 2 ((((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽) → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽)
1210, 11syl 17 1 (𝜑 → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cdif 3945  cin 3947  wss 3948   cuni 4908  cfv 6543  Topctop 22616  Clsdccld 22741  clsccl 22743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22617  df-cld 22744  df-cls 22746
This theorem is referenced by:  iscnrm3rlem6  47666
  Copyright terms: Public domain W3C validator