| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3rlem6 48921. (Contributed by Zhi Wang, 5-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3rlem4.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| iscnrm3rlem4.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| iscnrm3rlem5.3 | ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) |
| Ref | Expression |
|---|---|
| iscnrm3rlem5 | ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnrm3rlem4.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | iscnrm3rlem4.2 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | clscld 22940 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 5 | 1, 2, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 6 | iscnrm3rlem5.3 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ ∪ 𝐽) | |
| 7 | 3 | clscld 22940 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) |
| 8 | 1, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) |
| 9 | incld 22936 | . . 3 ⊢ ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ ((cls‘𝐽)‘𝑇) ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽)) | |
| 10 | 5, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽)) |
| 11 | 3 | cldopn 22924 | . 2 ⊢ ((((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
| 12 | 10, 11 | syl 17 | 1 ⊢ (𝜑 → (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 ∪ cuni 4873 ‘cfv 6513 Topctop 22786 Clsdccld 22909 clsccl 22911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-top 22787 df-cld 22912 df-cls 22914 |
| This theorem is referenced by: iscnrm3rlem6 48921 |
| Copyright terms: Public domain | W3C validator |