Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem3 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem3 46188
Description: Lemma for iscnrm3r 46194. The designed subspace is a subset of the original set; the two sets are closed sets in the subspace. (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3rlem3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))))

Proof of Theorem iscnrm3rlem3
StepHypRef Expression
1 uniexg 7584 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
2 difssd 4071 . . . 4 (𝐽 ∈ Top → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ⊆ 𝐽)
31, 2sselpwd 5253 . . 3 (𝐽 ∈ Top → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽)
43adantr 480 . 2 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽)
5 simpl 482 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → 𝐽 ∈ Top)
6 simprl 767 . . . 4 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → 𝑆 ∈ 𝒫 𝐽)
76elpwid 4549 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → 𝑆 𝐽)
85, 7iscnrm3rlem2 46187 . 2 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))
9 simprr 769 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → 𝑇 ∈ 𝒫 𝐽)
109elpwid 4549 . . . 4 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → 𝑇 𝐽)
115, 10iscnrm3rlem2 46187 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑇) ∩ ((cls‘𝐽)‘𝑆))))))
12 incom 4139 . . . . . 6 (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)) = (((cls‘𝐽)‘𝑇) ∩ ((cls‘𝐽)‘𝑆))
1312difeq2i 4058 . . . . 5 ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) = ( 𝐽 ∖ (((cls‘𝐽)‘𝑇) ∩ ((cls‘𝐽)‘𝑆)))
1413oveq2i 7279 . . . 4 (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) = (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑇) ∩ ((cls‘𝐽)‘𝑆))))
1514fveq2i 6771 . . 3 (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) = (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑇) ∩ ((cls‘𝐽)‘𝑆)))))
1611, 15eleqtrrdi 2851 . 2 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))
174, 8, 163jca 1126 1 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2109  Vcvv 3430  cdif 3888  cin 3890  𝒫 cpw 4538   cuni 4844  cfv 6430  (class class class)co 7268  t crest 17112  Topctop 22023  Clsdccld 22148  clsccl 22150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-en 8708  df-fin 8711  df-fi 9131  df-rest 17114  df-topgen 17135  df-top 22024  df-topon 22041  df-bases 22077  df-cld 22151  df-cls 22153
This theorem is referenced by:  iscnrm3r  46194
  Copyright terms: Public domain W3C validator