![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidl | Structured version Visualization version GIF version |
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
rngidl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngidl.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngoidl | ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4006 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑋 ⊆ 𝑋) | |
2 | rngidl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | rngidl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2733 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 2, 3, 4 | rngo0cl 36787 | . 2 ⊢ (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋) |
6 | 2, 3 | rngogcl 36780 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
7 | 6 | 3expa 1119 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
8 | 7 | ralrimiva 3147 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋) |
9 | eqid 2733 | . . . . . . . . 9 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
10 | 2, 9, 3 | rngocl 36769 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
11 | 10 | 3com23 1127 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
12 | 2, 9, 3 | rngocl 36769 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋) |
13 | 11, 12 | jca 513 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
14 | 13 | 3expa 1119 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
15 | 14 | ralrimiva 3147 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
16 | 8, 15 | jca 513 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
17 | 16 | ralrimiva 3147 | . 2 ⊢ (𝑅 ∈ RingOps → ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
18 | 2, 9, 3, 4 | isidl 36882 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))))) |
19 | 1, 5, 17, 18 | mpbir3and 1343 | 1 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ⊆ wss 3949 ran crn 5678 ‘cfv 6544 (class class class)co 7409 1st c1st 7973 2nd c2nd 7974 GIdcgi 29743 RingOpscrngo 36762 Idlcidl 36875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-riota 7365 df-ov 7412 df-1st 7975 df-2nd 7976 df-grpo 29746 df-gid 29747 df-ablo 29798 df-rngo 36763 df-idl 36878 |
This theorem is referenced by: divrngidl 36896 igenval 36929 igenidl 36931 |
Copyright terms: Public domain | W3C validator |