![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidl | Structured version Visualization version GIF version |
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
rngidl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngidl.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngoidl | ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3968 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑋 ⊆ 𝑋) | |
2 | rngidl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | rngidl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2737 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 2, 3, 4 | rngo0cl 36381 | . 2 ⊢ (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋) |
6 | 2, 3 | rngogcl 36374 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
7 | 6 | 3expa 1119 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
8 | 7 | ralrimiva 3144 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋) |
9 | eqid 2737 | . . . . . . . . 9 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
10 | 2, 9, 3 | rngocl 36363 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
11 | 10 | 3com23 1127 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
12 | 2, 9, 3 | rngocl 36363 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋) |
13 | 11, 12 | jca 513 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
14 | 13 | 3expa 1119 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
15 | 14 | ralrimiva 3144 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
16 | 8, 15 | jca 513 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
17 | 16 | ralrimiva 3144 | . 2 ⊢ (𝑅 ∈ RingOps → ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
18 | 2, 9, 3, 4 | isidl 36476 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))))) |
19 | 1, 5, 17, 18 | mpbir3and 1343 | 1 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ⊆ wss 3911 ran crn 5635 ‘cfv 6497 (class class class)co 7358 1st c1st 7920 2nd c2nd 7921 GIdcgi 29435 RingOpscrngo 36356 Idlcidl 36469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fo 6503 df-fv 6505 df-riota 7314 df-ov 7361 df-1st 7922 df-2nd 7923 df-grpo 29438 df-gid 29439 df-ablo 29490 df-rngo 36357 df-idl 36472 |
This theorem is referenced by: divrngidl 36490 igenval 36523 igenidl 36525 |
Copyright terms: Public domain | W3C validator |