![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidl | Structured version Visualization version GIF version |
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
rngidl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngidl.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngoidl | ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4005 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑋 ⊆ 𝑋) | |
2 | rngidl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | rngidl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2728 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 2, 3, 4 | rngo0cl 37425 | . 2 ⊢ (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋) |
6 | 2, 3 | rngogcl 37418 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
7 | 6 | 3expa 1115 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
8 | 7 | ralrimiva 3143 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋) |
9 | eqid 2728 | . . . . . . . . 9 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
10 | 2, 9, 3 | rngocl 37407 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
11 | 10 | 3com23 1123 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
12 | 2, 9, 3 | rngocl 37407 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋) |
13 | 11, 12 | jca 510 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
14 | 13 | 3expa 1115 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
15 | 14 | ralrimiva 3143 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
16 | 8, 15 | jca 510 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
17 | 16 | ralrimiva 3143 | . 2 ⊢ (𝑅 ∈ RingOps → ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
18 | 2, 9, 3, 4 | isidl 37520 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))))) |
19 | 1, 5, 17, 18 | mpbir3and 1339 | 1 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ⊆ wss 3949 ran crn 5683 ‘cfv 6553 (class class class)co 7426 1st c1st 7997 2nd c2nd 7998 GIdcgi 30320 RingOpscrngo 37400 Idlcidl 37513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fo 6559 df-fv 6561 df-riota 7382 df-ov 7429 df-1st 7999 df-2nd 8000 df-grpo 30323 df-gid 30324 df-ablo 30375 df-rngo 37401 df-idl 37516 |
This theorem is referenced by: divrngidl 37534 igenval 37567 igenidl 37569 |
Copyright terms: Public domain | W3C validator |