Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidl Structured version   Visualization version   GIF version

Theorem rngoidl 38025
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
rngidl.1 𝐺 = (1st𝑅)
rngidl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoidl (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))

Proof of Theorem rngoidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3973 . 2 (𝑅 ∈ RingOps → 𝑋𝑋)
2 rngidl.1 . . 3 𝐺 = (1st𝑅)
3 rngidl.2 . . 3 𝑋 = ran 𝐺
4 eqid 2730 . . 3 (GId‘𝐺) = (GId‘𝐺)
52, 3, 4rngo0cl 37920 . 2 (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋)
62, 3rngogcl 37913 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
763expa 1118 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
87ralrimiva 3126 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋)
9 eqid 2730 . . . . . . . . 9 (2nd𝑅) = (2nd𝑅)
102, 9, 3rngocl 37902 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧𝑋𝑥𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
11103com23 1126 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
122, 9, 3rngocl 37902 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥(2nd𝑅)𝑧) ∈ 𝑋)
1311, 12jca 511 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
14133expa 1118 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
1514ralrimiva 3126 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
168, 15jca 511 . . 3 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
1716ralrimiva 3126 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
182, 9, 3, 4isidl 38015 . 2 (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))))
191, 5, 17, 18mpbir3and 1343 1 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  ran crn 5642  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  GIdcgi 30426  RingOpscrngo 37895  Idlcidl 38008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-riota 7347  df-ov 7393  df-1st 7971  df-2nd 7972  df-grpo 30429  df-gid 30430  df-ablo 30481  df-rngo 37896  df-idl 38011
This theorem is referenced by:  divrngidl  38029  igenval  38062  igenidl  38064
  Copyright terms: Public domain W3C validator