Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidl Structured version   Visualization version   GIF version

Theorem rngoidl 38011
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
rngidl.1 𝐺 = (1st𝑅)
rngidl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoidl (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))

Proof of Theorem rngoidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 4019 . 2 (𝑅 ∈ RingOps → 𝑋𝑋)
2 rngidl.1 . . 3 𝐺 = (1st𝑅)
3 rngidl.2 . . 3 𝑋 = ran 𝐺
4 eqid 2735 . . 3 (GId‘𝐺) = (GId‘𝐺)
52, 3, 4rngo0cl 37906 . 2 (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋)
62, 3rngogcl 37899 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
763expa 1117 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
87ralrimiva 3144 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋)
9 eqid 2735 . . . . . . . . 9 (2nd𝑅) = (2nd𝑅)
102, 9, 3rngocl 37888 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧𝑋𝑥𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
11103com23 1125 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
122, 9, 3rngocl 37888 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥(2nd𝑅)𝑧) ∈ 𝑋)
1311, 12jca 511 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
14133expa 1117 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
1514ralrimiva 3144 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
168, 15jca 511 . . 3 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
1716ralrimiva 3144 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
182, 9, 3, 4isidl 38001 . 2 (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))))
191, 5, 17, 18mpbir3and 1341 1 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  ran crn 5690  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  GIdcgi 30519  RingOpscrngo 37881  Idlcidl 37994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-riota 7388  df-ov 7434  df-1st 8013  df-2nd 8014  df-grpo 30522  df-gid 30523  df-ablo 30574  df-rngo 37882  df-idl 37997
This theorem is referenced by:  divrngidl  38015  igenval  38048  igenidl  38050
  Copyright terms: Public domain W3C validator