Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidl Structured version   Visualization version   GIF version

Theorem rngoidl 38013
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
rngidl.1 𝐺 = (1st𝑅)
rngidl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoidl (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))

Proof of Theorem rngoidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3972 . 2 (𝑅 ∈ RingOps → 𝑋𝑋)
2 rngidl.1 . . 3 𝐺 = (1st𝑅)
3 rngidl.2 . . 3 𝑋 = ran 𝐺
4 eqid 2730 . . 3 (GId‘𝐺) = (GId‘𝐺)
52, 3, 4rngo0cl 37908 . 2 (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋)
62, 3rngogcl 37901 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
763expa 1118 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
87ralrimiva 3126 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋)
9 eqid 2730 . . . . . . . . 9 (2nd𝑅) = (2nd𝑅)
102, 9, 3rngocl 37890 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧𝑋𝑥𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
11103com23 1126 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
122, 9, 3rngocl 37890 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥(2nd𝑅)𝑧) ∈ 𝑋)
1311, 12jca 511 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
14133expa 1118 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
1514ralrimiva 3126 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
168, 15jca 511 . . 3 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
1716ralrimiva 3126 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
182, 9, 3, 4isidl 38003 . 2 (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))))
191, 5, 17, 18mpbir3and 1343 1 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3916  ran crn 5641  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  GIdcgi 30425  RingOpscrngo 37883  Idlcidl 37996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fo 6519  df-fv 6521  df-riota 7346  df-ov 7392  df-1st 7970  df-2nd 7971  df-grpo 30428  df-gid 30429  df-ablo 30480  df-rngo 37884  df-idl 37999
This theorem is referenced by:  divrngidl  38017  igenval  38050  igenidl  38052
  Copyright terms: Public domain W3C validator