| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidl | Structured version Visualization version GIF version | ||
| Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| rngidl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rngidl.2 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| rngoidl | ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3987 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑋 ⊆ 𝑋) | |
| 2 | rngidl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 3 | rngidl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | eqid 2734 | . . 3 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 5 | 2, 3, 4 | rngo0cl 37885 | . 2 ⊢ (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋) |
| 6 | 2, 3 | rngogcl 37878 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
| 7 | 6 | 3expa 1118 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) ∈ 𝑋) |
| 8 | 7 | ralrimiva 3133 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋) |
| 9 | eqid 2734 | . . . . . . . . 9 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 10 | 2, 9, 3 | rngocl 37867 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
| 11 | 10 | 3com23 1126 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋) |
| 12 | 2, 9, 3 | rngocl 37867 | . . . . . . 7 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋) |
| 13 | 11, 12 | jca 511 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
| 14 | 13 | 3expa 1118 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
| 15 | 14 | ralrimiva 3133 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋)) |
| 16 | 8, 15 | jca 511 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
| 17 | 16 | ralrimiva 3133 | . 2 ⊢ (𝑅 ∈ RingOps → ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))) |
| 18 | 2, 9, 3, 4 | isidl 37980 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝑋))))) |
| 19 | 1, 5, 17, 18 | mpbir3and 1342 | 1 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 ran crn 5666 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 GIdcgi 30437 RingOpscrngo 37860 Idlcidl 37973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-riota 7370 df-ov 7416 df-1st 7996 df-2nd 7997 df-grpo 30440 df-gid 30441 df-ablo 30492 df-rngo 37861 df-idl 37976 |
| This theorem is referenced by: divrngidl 37994 igenval 38027 igenidl 38029 |
| Copyright terms: Public domain | W3C validator |