Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islan2 Structured version   Visualization version   GIF version

Theorem islan2 49362
Description: A left Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypotheses
Ref Expression
islan.r 𝑅 = (𝐷 FuncCat 𝐸)
islan.s 𝑆 = (𝐶 FuncCat 𝐸)
islan.k 𝐾 = (⟨𝐷, 𝐸⟩ −∘F 𝐹)
Assertion
Ref Expression
islan2 (𝐿(𝐹(⟨𝐶, 𝐷⟩Lan𝐸)𝑋)𝐴𝐿(𝐾(𝑅UP𝑆)𝑋)𝐴)

Proof of Theorem islan2
StepHypRef Expression
1 islan.r . . 3 𝑅 = (𝐷 FuncCat 𝐸)
2 islan.s . . 3 𝑆 = (𝐶 FuncCat 𝐸)
3 islan.k . . 3 𝐾 = (⟨𝐷, 𝐸⟩ −∘F 𝐹)
41, 2, 3islan 49361 . 2 (⟨𝐿, 𝐴⟩ ∈ (𝐹(⟨𝐶, 𝐷⟩Lan𝐸)𝑋) → ⟨𝐿, 𝐴⟩ ∈ (𝐾(𝑅UP𝑆)𝑋))
5 df-br 5118 . 2 (𝐿(𝐹(⟨𝐶, 𝐷⟩Lan𝐸)𝑋)𝐴 ↔ ⟨𝐿, 𝐴⟩ ∈ (𝐹(⟨𝐶, 𝐷⟩Lan𝐸)𝑋))
6 df-br 5118 . 2 (𝐿(𝐾(𝑅UP𝑆)𝑋)𝐴 ↔ ⟨𝐿, 𝐴⟩ ∈ (𝐾(𝑅UP𝑆)𝑋))
74, 5, 63imtr4i 292 1 (𝐿(𝐹(⟨𝐶, 𝐷⟩Lan𝐸)𝑋)𝐴𝐿(𝐾(𝑅UP𝑆)𝑋)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4605   class class class wbr 5117  (class class class)co 7400   FuncCat cfuc 17945  UPcup 48974   −∘F cprcof 49147  Lanclan 49343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-func 17858  df-lan 49345
This theorem is referenced by:  lanrcl5  49370
  Copyright terms: Public domain W3C validator