Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islan Structured version   Visualization version   GIF version

Theorem islan 49604
Description: A left Kan extension is a universal pair. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
islan.r 𝑅 = (𝐷 FuncCat 𝐸)
islan.s 𝑆 = (𝐶 FuncCat 𝐸)
islan.k 𝐾 = (⟨𝐷, 𝐸⟩ −∘F 𝐹)
Assertion
Ref Expression
islan (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝐿 ∈ (𝐾(𝑅 UP 𝑆)𝑋))

Proof of Theorem islan
StepHypRef Expression
1 id 22 . 2 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋))
2 islan.r . . 3 𝑅 = (𝐷 FuncCat 𝐸)
3 islan.s . . 3 𝑆 = (𝐶 FuncCat 𝐸)
4 lanrcl 49600 . . . 4 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
54simpld 494 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝐹 ∈ (𝐶 Func 𝐷))
64simprd 495 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝑋 ∈ (𝐶 Func 𝐸))
7 islan.k . . . . 5 𝐾 = (⟨𝐷, 𝐸⟩ −∘F 𝐹)
87eqcomi 2739 . . . 4 (⟨𝐷, 𝐸⟩ −∘F 𝐹) = 𝐾
98a1i 11 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = 𝐾)
102, 3, 5, 6, 9lanval 49598 . 2 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = (𝐾(𝑅 UP 𝑆)𝑋))
111, 10eleqtrd 2831 1 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝐿 ∈ (𝐾(𝑅 UP 𝑆)𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4597  (class class class)co 7389   Func cfunc 17822   FuncCat cfuc 17913   UP cup 49152   −∘F cprcof 49352   Lan clan 49584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-func 17826  df-lan 49586
This theorem is referenced by:  islan2  49605  lanval2  49606  lanrcl4  49613
  Copyright terms: Public domain W3C validator