| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islan | Structured version Visualization version GIF version | ||
| Description: A left Kan extension is a universal pair. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| islan.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| islan.s | ⊢ 𝑆 = (𝐶 FuncCat 𝐸) |
| islan.k | ⊢ 𝐾 = (〈𝐷, 𝐸〉 −∘F 𝐹) |
| Ref | Expression |
|---|---|
| islan | ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → 𝐿 ∈ (𝐾(𝑅 UP 𝑆)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → 𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋)) | |
| 2 | islan.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 3 | islan.s | . . 3 ⊢ 𝑆 = (𝐶 FuncCat 𝐸) | |
| 4 | lanrcl 49610 | . . . 4 ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸))) | |
| 5 | 4 | simpld 494 | . . 3 ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 6 | 4 | simprd 495 | . . 3 ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → 𝑋 ∈ (𝐶 Func 𝐸)) |
| 7 | islan.k | . . . . 5 ⊢ 𝐾 = (〈𝐷, 𝐸〉 −∘F 𝐹) | |
| 8 | 7 | eqcomi 2738 | . . . 4 ⊢ (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾 |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) |
| 10 | 2, 3, 5, 6, 9 | lanval 49608 | . 2 ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) = (𝐾(𝑅 UP 𝑆)𝑋)) |
| 11 | 1, 10 | eleqtrd 2830 | 1 ⊢ (𝐿 ∈ (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) → 𝐿 ∈ (𝐾(𝑅 UP 𝑆)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 (class class class)co 7349 Func cfunc 17761 FuncCat cfuc 17852 UP cup 49162 −∘F cprcof 49362 Lan clan 49594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-func 17765 df-lan 49596 |
| This theorem is referenced by: islan2 49615 lanval2 49616 lanrcl4 49623 |
| Copyright terms: Public domain | W3C validator |