Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idldil Structured version   Visualization version   GIF version

Theorem idldil 36277
Description: The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idldil.b 𝐵 = (Base‘𝐾)
idldil.h 𝐻 = (LHyp‘𝐾)
idldil.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
idldil ((𝐾𝐴𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝐷)

Proof of Theorem idldil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idldil.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2778 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
31, 2idlaut 36259 . . 3 (𝐾𝐴 → ( I ↾ 𝐵) ∈ (LAut‘𝐾))
43adantr 474 . 2 ((𝐾𝐴𝑊𝐻) → ( I ↾ 𝐵) ∈ (LAut‘𝐾))
5 fvresi 6708 . . . . 5 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
65a1d 25 . . . 4 (𝑥𝐵 → (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥))
76rgen 3104 . . 3 𝑥𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
87a1i 11 . 2 ((𝐾𝐴𝑊𝐻) → ∀𝑥𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥))
9 eqid 2778 . . 3 (le‘𝐾) = (le‘𝐾)
10 idldil.h . . 3 𝐻 = (LHyp‘𝐾)
11 idldil.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
121, 9, 10, 2, 11isldil 36273 . 2 ((𝐾𝐴𝑊𝐻) → (( I ↾ 𝐵) ∈ 𝐷 ↔ (( I ↾ 𝐵) ∈ (LAut‘𝐾) ∧ ∀𝑥𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥))))
134, 8, 12mpbir2and 703 1 ((𝐾𝐴𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090   class class class wbr 4888   I cid 5262  cres 5359  cfv 6137  Basecbs 16266  lecple 16356  LHypclh 36147  LAutclaut 36148  LDilcldil 36263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-laut 36152  df-ldil 36267
This theorem is referenced by:  idltrn  36313
  Copyright terms: Public domain W3C validator