Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idldil | Structured version Visualization version GIF version |
Description: The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
idldil.b | ⊢ 𝐵 = (Base‘𝐾) |
idldil.h | ⊢ 𝐻 = (LHyp‘𝐾) |
idldil.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
idldil | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idldil.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
3 | 1, 2 | idlaut 38110 | . . 3 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ (LAut‘𝐾)) |
4 | 3 | adantr 481 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ (LAut‘𝐾)) |
5 | fvresi 7045 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) | |
6 | 5 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)) |
7 | 6 | rgen 3074 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
8 | 7 | a1i 11 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)) |
9 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
10 | idldil.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | idldil.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
12 | 1, 9, 10, 2, 11 | isldil 38124 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵) ∈ 𝐷 ↔ (( I ↾ 𝐵) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)))) |
13 | 4, 8, 12 | mpbir2and 710 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 I cid 5488 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 lecple 16969 LHypclh 37998 LAutclaut 37999 LDilcldil 38114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-laut 38003 df-ldil 38118 |
This theorem is referenced by: idltrn 38164 |
Copyright terms: Public domain | W3C validator |