![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idldil | Structured version Visualization version GIF version |
Description: The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
idldil.b | β’ π΅ = (BaseβπΎ) |
idldil.h | β’ π» = (LHypβπΎ) |
idldil.d | β’ π· = ((LDilβπΎ)βπ) |
Ref | Expression |
---|---|
idldil | β’ ((πΎ β π΄ β§ π β π») β ( I βΎ π΅) β π·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idldil.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2730 | . . . 4 β’ (LAutβπΎ) = (LAutβπΎ) | |
3 | 1, 2 | idlaut 39272 | . . 3 β’ (πΎ β π΄ β ( I βΎ π΅) β (LAutβπΎ)) |
4 | 3 | adantr 479 | . 2 β’ ((πΎ β π΄ β§ π β π») β ( I βΎ π΅) β (LAutβπΎ)) |
5 | fvresi 7174 | . . . . 5 β’ (π₯ β π΅ β (( I βΎ π΅)βπ₯) = π₯) | |
6 | 5 | a1d 25 | . . . 4 β’ (π₯ β π΅ β (π₯(leβπΎ)π β (( I βΎ π΅)βπ₯) = π₯)) |
7 | 6 | rgen 3061 | . . 3 β’ βπ₯ β π΅ (π₯(leβπΎ)π β (( I βΎ π΅)βπ₯) = π₯) |
8 | 7 | a1i 11 | . 2 β’ ((πΎ β π΄ β§ π β π») β βπ₯ β π΅ (π₯(leβπΎ)π β (( I βΎ π΅)βπ₯) = π₯)) |
9 | eqid 2730 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
10 | idldil.h | . . 3 β’ π» = (LHypβπΎ) | |
11 | idldil.d | . . 3 β’ π· = ((LDilβπΎ)βπ) | |
12 | 1, 9, 10, 2, 11 | isldil 39286 | . 2 β’ ((πΎ β π΄ β§ π β π») β (( I βΎ π΅) β π· β (( I βΎ π΅) β (LAutβπΎ) β§ βπ₯ β π΅ (π₯(leβπΎ)π β (( I βΎ π΅)βπ₯) = π₯)))) |
13 | 4, 8, 12 | mpbir2and 709 | 1 β’ ((πΎ β π΄ β§ π β π») β ( I βΎ π΅) β π·) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 class class class wbr 5149 I cid 5574 βΎ cres 5679 βcfv 6544 Basecbs 17150 lecple 17210 LHypclh 39160 LAutclaut 39161 LDilcldil 39276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8826 df-laut 39165 df-ldil 39280 |
This theorem is referenced by: idltrn 39326 |
Copyright terms: Public domain | W3C validator |