| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idldil | Structured version Visualization version GIF version | ||
| Description: The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.) |
| Ref | Expression |
|---|---|
| idldil.b | ⊢ 𝐵 = (Base‘𝐾) |
| idldil.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| idldil.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| idldil | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idldil.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 3 | 1, 2 | idlaut 40090 | . . 3 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ (LAut‘𝐾)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ (LAut‘𝐾)) |
| 5 | fvresi 7147 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) | |
| 6 | 5 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)) |
| 7 | 6 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
| 8 | 7 | a1i 11 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)) |
| 9 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | idldil.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 11 | idldil.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 12 | 1, 9, 10, 2, 11 | isldil 40104 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵) ∈ 𝐷 ↔ (( I ↾ 𝐵) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)))) |
| 13 | 4, 8, 12 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 I cid 5532 ↾ cres 5640 ‘cfv 6511 Basecbs 17179 lecple 17227 LHypclh 39978 LAutclaut 39979 LDilcldil 40094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-laut 39983 df-ldil 40098 |
| This theorem is referenced by: idltrn 40144 |
| Copyright terms: Public domain | W3C validator |