Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idldil | Structured version Visualization version GIF version |
Description: The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
idldil.b | ⊢ 𝐵 = (Base‘𝐾) |
idldil.h | ⊢ 𝐻 = (LHyp‘𝐾) |
idldil.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
idldil | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idldil.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
3 | 1, 2 | idlaut 38037 | . . 3 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ (LAut‘𝐾)) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ (LAut‘𝐾)) |
5 | fvresi 7027 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) | |
6 | 5 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)) |
7 | 6 | rgen 3073 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
8 | 7 | a1i 11 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)) |
9 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
10 | idldil.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | idldil.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
12 | 1, 9, 10, 2, 11 | isldil 38051 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵) ∈ 𝐷 ↔ (( I ↾ 𝐵) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)))) |
13 | 4, 8, 12 | mpbir2and 709 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 I cid 5479 ↾ cres 5582 ‘cfv 6418 Basecbs 16840 lecple 16895 LHypclh 37925 LAutclaut 37926 LDilcldil 38041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-laut 37930 df-ldil 38045 |
This theorem is referenced by: idltrn 38091 |
Copyright terms: Public domain | W3C validator |