Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idldil Structured version   Visualization version   GIF version

Theorem idldil 37249
Description: The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idldil.b 𝐵 = (Base‘𝐾)
idldil.h 𝐻 = (LHyp‘𝐾)
idldil.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
idldil ((𝐾𝐴𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝐷)

Proof of Theorem idldil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idldil.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2821 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
31, 2idlaut 37231 . . 3 (𝐾𝐴 → ( I ↾ 𝐵) ∈ (LAut‘𝐾))
43adantr 483 . 2 ((𝐾𝐴𝑊𝐻) → ( I ↾ 𝐵) ∈ (LAut‘𝐾))
5 fvresi 6934 . . . . 5 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
65a1d 25 . . . 4 (𝑥𝐵 → (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥))
76rgen 3148 . . 3 𝑥𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
87a1i 11 . 2 ((𝐾𝐴𝑊𝐻) → ∀𝑥𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥))
9 eqid 2821 . . 3 (le‘𝐾) = (le‘𝐾)
10 idldil.h . . 3 𝐻 = (LHyp‘𝐾)
11 idldil.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
121, 9, 10, 2, 11isldil 37245 . 2 ((𝐾𝐴𝑊𝐻) → (( I ↾ 𝐵) ∈ 𝐷 ↔ (( I ↾ 𝐵) ∈ (LAut‘𝐾) ∧ ∀𝑥𝐵 (𝑥(le‘𝐾)𝑊 → (( I ↾ 𝐵)‘𝑥) = 𝑥))))
134, 8, 12mpbir2and 711 1 ((𝐾𝐴𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5065   I cid 5458  cres 5556  cfv 6354  Basecbs 16482  lecple 16571  LHypclh 37119  LAutclaut 37120  LDilcldil 37235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8407  df-laut 37124  df-ldil 37239
This theorem is referenced by:  idltrn  37285
  Copyright terms: Public domain W3C validator