Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilval Structured version   Visualization version   GIF version

Theorem ldilval 40151
Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ldilval.b 𝐵 = (Base‘𝐾)
ldilval.l = (le‘𝐾)
ldilval.h 𝐻 = (LHyp‘𝐾)
ldilval.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilval (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)

Proof of Theorem ldilval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ldilval.b . . . . 5 𝐵 = (Base‘𝐾)
2 ldilval.l . . . . 5 = (le‘𝐾)
3 ldilval.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 eqid 2731 . . . . 5 (LAut‘𝐾) = (LAut‘𝐾)
5 ldilval.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
61, 2, 3, 4, 5isldil 40148 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
7 simpr 484 . . . 4 ((𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)) → ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))
86, 7biimtrdi 253 . . 3 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 → ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
9 breq1 5094 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
10 fveq2 6822 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
11 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2747 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑋) = 𝑋))
139, 12imbi12d 344 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑊 → (𝐹𝑥) = 𝑥) ↔ (𝑋 𝑊 → (𝐹𝑋) = 𝑋)))
1413rspccv 3574 . . . 4 (∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥) → (𝑋𝐵 → (𝑋 𝑊 → (𝐹𝑋) = 𝑋)))
1514impd 410 . . 3 (∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥) → ((𝑋𝐵𝑋 𝑊) → (𝐹𝑋) = 𝑋))
168, 15syl6 35 . 2 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 → ((𝑋𝐵𝑋 𝑊) → (𝐹𝑋) = 𝑋)))
17163imp 1110 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  cfv 6481  Basecbs 17117  lecple 17165  LHypclh 40022  LAutclaut 40023  LDilcldil 40138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ldil 40142
This theorem is referenced by:  ldilcnv  40153  ldilco  40154  ltrnval1  40172
  Copyright terms: Public domain W3C validator