![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilval | Structured version Visualization version GIF version |
Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ldilval.b | β’ π΅ = (BaseβπΎ) |
ldilval.l | β’ β€ = (leβπΎ) |
ldilval.h | β’ π» = (LHypβπΎ) |
ldilval.d | β’ π· = ((LDilβπΎ)βπ) |
Ref | Expression |
---|---|
ldilval | β’ (((πΎ β π β§ π β π») β§ πΉ β π· β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldilval.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
2 | ldilval.l | . . . . 5 β’ β€ = (leβπΎ) | |
3 | ldilval.h | . . . . 5 β’ π» = (LHypβπΎ) | |
4 | eqid 2730 | . . . . 5 β’ (LAutβπΎ) = (LAutβπΎ) | |
5 | ldilval.d | . . . . 5 β’ π· = ((LDilβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | isldil 39284 | . . . 4 β’ ((πΎ β π β§ π β π») β (πΉ β π· β (πΉ β (LAutβπΎ) β§ βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯)))) |
7 | simpr 483 | . . . 4 β’ ((πΉ β (LAutβπΎ) β§ βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯)) β βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯)) | |
8 | 6, 7 | syl6bi 252 | . . 3 β’ ((πΎ β π β§ π β π») β (πΉ β π· β βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯))) |
9 | breq1 5150 | . . . . . 6 β’ (π₯ = π β (π₯ β€ π β π β€ π)) | |
10 | fveq2 6890 | . . . . . . 7 β’ (π₯ = π β (πΉβπ₯) = (πΉβπ)) | |
11 | id 22 | . . . . . . 7 β’ (π₯ = π β π₯ = π) | |
12 | 10, 11 | eqeq12d 2746 | . . . . . 6 β’ (π₯ = π β ((πΉβπ₯) = π₯ β (πΉβπ) = π)) |
13 | 9, 12 | imbi12d 343 | . . . . 5 β’ (π₯ = π β ((π₯ β€ π β (πΉβπ₯) = π₯) β (π β€ π β (πΉβπ) = π))) |
14 | 13 | rspccv 3608 | . . . 4 β’ (βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯) β (π β π΅ β (π β€ π β (πΉβπ) = π))) |
15 | 14 | impd 409 | . . 3 β’ (βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯) β ((π β π΅ β§ π β€ π) β (πΉβπ) = π)) |
16 | 8, 15 | syl6 35 | . 2 β’ ((πΎ β π β§ π β π») β (πΉ β π· β ((π β π΅ β§ π β€ π) β (πΉβπ) = π))) |
17 | 16 | 3imp 1109 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π· β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 class class class wbr 5147 βcfv 6542 Basecbs 17148 lecple 17208 LHypclh 39158 LAutclaut 39159 LDilcldil 39274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ldil 39278 |
This theorem is referenced by: ldilcnv 39289 ldilco 39290 ltrnval1 39308 |
Copyright terms: Public domain | W3C validator |