Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilval Structured version   Visualization version   GIF version

Theorem ldilval 39287
Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ldilval.b 𝐡 = (Baseβ€˜πΎ)
ldilval.l ≀ = (leβ€˜πΎ)
ldilval.h 𝐻 = (LHypβ€˜πΎ)
ldilval.d 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ldilval (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΉβ€˜π‘‹) = 𝑋)

Proof of Theorem ldilval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ldilval.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
2 ldilval.l . . . . 5 ≀ = (leβ€˜πΎ)
3 ldilval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 eqid 2730 . . . . 5 (LAutβ€˜πΎ) = (LAutβ€˜πΎ)
5 ldilval.d . . . . 5 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5isldil 39284 . . . 4 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (LAutβ€˜πΎ) ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯))))
7 simpr 483 . . . 4 ((𝐹 ∈ (LAutβ€˜πΎ) ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯)) β†’ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯))
86, 7syl6bi 252 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝐷 β†’ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯)))
9 breq1 5150 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ π‘Š ↔ 𝑋 ≀ π‘Š))
10 fveq2 6890 . . . . . . 7 (π‘₯ = 𝑋 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘‹))
11 id 22 . . . . . . 7 (π‘₯ = 𝑋 β†’ π‘₯ = 𝑋)
1210, 11eqeq12d 2746 . . . . . 6 (π‘₯ = 𝑋 β†’ ((πΉβ€˜π‘₯) = π‘₯ ↔ (πΉβ€˜π‘‹) = 𝑋))
139, 12imbi12d 343 . . . . 5 (π‘₯ = 𝑋 β†’ ((π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯) ↔ (𝑋 ≀ π‘Š β†’ (πΉβ€˜π‘‹) = 𝑋)))
1413rspccv 3608 . . . 4 (βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯) β†’ (𝑋 ∈ 𝐡 β†’ (𝑋 ≀ π‘Š β†’ (πΉβ€˜π‘‹) = 𝑋)))
1514impd 409 . . 3 (βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ π‘Š β†’ (πΉβ€˜π‘₯) = π‘₯) β†’ ((𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) β†’ (πΉβ€˜π‘‹) = 𝑋))
168, 15syl6 35 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝐷 β†’ ((𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) β†’ (πΉβ€˜π‘‹) = 𝑋)))
17163imp 1109 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΉβ€˜π‘‹) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   class class class wbr 5147  β€˜cfv 6542  Basecbs 17148  lecple 17208  LHypclh 39158  LAutclaut 39159  LDilcldil 39274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ldil 39278
This theorem is referenced by:  ldilcnv  39289  ldilco  39290  ltrnval1  39308
  Copyright terms: Public domain W3C validator