| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilval | Structured version Visualization version GIF version | ||
| Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ldilval.b | ⊢ 𝐵 = (Base‘𝐾) |
| ldilval.l | ⊢ ≤ = (le‘𝐾) |
| ldilval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ldilval.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ldilval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldilval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | ldilval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 3 | ldilval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 5 | ldilval.d | . . . . 5 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | isldil 40134 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)))) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)) → ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)) | |
| 8 | 6, 7 | biimtrdi 253 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 → ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
| 9 | breq1 5127 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
| 10 | fveq2 6881 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 11 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 12 | 10, 11 | eqeq12d 2752 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑋) = 𝑋)) |
| 13 | 9, 12 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) ↔ (𝑋 ≤ 𝑊 → (𝐹‘𝑋) = 𝑋))) |
| 14 | 13 | rspccv 3603 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) → (𝑋 ∈ 𝐵 → (𝑋 ≤ 𝑊 → (𝐹‘𝑋) = 𝑋))) |
| 15 | 14 | impd 410 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → (𝐹‘𝑋) = 𝑋)) |
| 16 | 8, 15 | syl6 35 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → (𝐹‘𝑋) = 𝑋))) |
| 17 | 16 | 3imp 1110 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 lecple 17283 LHypclh 40008 LAutclaut 40009 LDilcldil 40124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ldil 40128 |
| This theorem is referenced by: ldilcnv 40139 ldilco 40140 ltrnval1 40158 |
| Copyright terms: Public domain | W3C validator |