Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilval Structured version   Visualization version   GIF version

Theorem ldilval 38054
Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ldilval.b 𝐵 = (Base‘𝐾)
ldilval.l = (le‘𝐾)
ldilval.h 𝐻 = (LHyp‘𝐾)
ldilval.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilval (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)

Proof of Theorem ldilval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ldilval.b . . . . 5 𝐵 = (Base‘𝐾)
2 ldilval.l . . . . 5 = (le‘𝐾)
3 ldilval.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 eqid 2738 . . . . 5 (LAut‘𝐾) = (LAut‘𝐾)
5 ldilval.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
61, 2, 3, 4, 5isldil 38051 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
7 simpr 484 . . . 4 ((𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)) → ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))
86, 7syl6bi 252 . . 3 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 → ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
9 breq1 5073 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
10 fveq2 6756 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
11 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2754 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑋) = 𝑋))
139, 12imbi12d 344 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑊 → (𝐹𝑥) = 𝑥) ↔ (𝑋 𝑊 → (𝐹𝑋) = 𝑋)))
1413rspccv 3549 . . . 4 (∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥) → (𝑋𝐵 → (𝑋 𝑊 → (𝐹𝑋) = 𝑋)))
1514impd 410 . . 3 (∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥) → ((𝑋𝐵𝑋 𝑊) → (𝐹𝑋) = 𝑋))
168, 15syl6 35 . 2 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 → ((𝑋𝐵𝑋 𝑊) → (𝐹𝑋) = 𝑋)))
17163imp 1109 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  LHypclh 37925  LAutclaut 37926  LDilcldil 38041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ldil 38045
This theorem is referenced by:  ldilcnv  38056  ldilco  38057  ltrnval1  38075
  Copyright terms: Public domain W3C validator