![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilval | Structured version Visualization version GIF version |
Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ldilval.b | ⊢ 𝐵 = (Base‘𝐾) |
ldilval.l | ⊢ ≤ = (le‘𝐾) |
ldilval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldilval.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ldilval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldilval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ldilval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | ldilval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | eqid 2740 | . . . . 5 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
5 | ldilval.d | . . . . 5 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | isldil 40067 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)))) |
7 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)) → ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)) | |
8 | 6, 7 | biimtrdi 253 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 → ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
9 | breq1 5169 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
10 | fveq2 6920 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
11 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
12 | 10, 11 | eqeq12d 2756 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑋) = 𝑋)) |
13 | 9, 12 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) ↔ (𝑋 ≤ 𝑊 → (𝐹‘𝑋) = 𝑋))) |
14 | 13 | rspccv 3632 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) → (𝑋 ∈ 𝐵 → (𝑋 ≤ 𝑊 → (𝐹‘𝑋) = 𝑋))) |
15 | 14 | impd 410 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → (𝐹‘𝑋) = 𝑋)) |
16 | 8, 15 | syl6 35 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → (𝐹‘𝑋) = 𝑋))) |
17 | 16 | 3imp 1111 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 LHypclh 39941 LAutclaut 39942 LDilcldil 40057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ldil 40061 |
This theorem is referenced by: ldilcnv 40072 ldilco 40073 ltrnval1 40091 |
Copyright terms: Public domain | W3C validator |