Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilval | Structured version Visualization version GIF version |
Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ldilval.b | ⊢ 𝐵 = (Base‘𝐾) |
ldilval.l | ⊢ ≤ = (le‘𝐾) |
ldilval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldilval.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ldilval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldilval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ldilval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | ldilval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | eqid 2738 | . . . . 5 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
5 | ldilval.d | . . . . 5 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | isldil 38051 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)))) |
7 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)) → ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)) | |
8 | 6, 7 | syl6bi 252 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 → ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥))) |
9 | breq1 5073 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
10 | fveq2 6756 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
11 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
12 | 10, 11 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑋) = 𝑋)) |
13 | 9, 12 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) ↔ (𝑋 ≤ 𝑊 → (𝐹‘𝑋) = 𝑋))) |
14 | 13 | rspccv 3549 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) → (𝑋 ∈ 𝐵 → (𝑋 ≤ 𝑊 → (𝐹‘𝑋) = 𝑋))) |
15 | 14 | impd 410 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥) → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → (𝐹‘𝑋) = 𝑋)) |
16 | 8, 15 | syl6 35 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) → (𝐹‘𝑋) = 𝑋))) |
17 | 16 | 3imp 1109 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 LHypclh 37925 LAutclaut 37926 LDilcldil 38041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ldil 38045 |
This theorem is referenced by: ldilcnv 38056 ldilco 38057 ltrnval1 38075 |
Copyright terms: Public domain | W3C validator |