Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilval Structured version   Visualization version   GIF version

Theorem ldilval 38123
Description: Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ldilval.b 𝐵 = (Base‘𝐾)
ldilval.l = (le‘𝐾)
ldilval.h 𝐻 = (LHyp‘𝐾)
ldilval.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilval (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)

Proof of Theorem ldilval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ldilval.b . . . . 5 𝐵 = (Base‘𝐾)
2 ldilval.l . . . . 5 = (le‘𝐾)
3 ldilval.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 eqid 2740 . . . . 5 (LAut‘𝐾) = (LAut‘𝐾)
5 ldilval.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
61, 2, 3, 4, 5isldil 38120 . . . 4 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
7 simpr 485 . . . 4 ((𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)) → ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))
86, 7syl6bi 252 . . 3 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 → ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
9 breq1 5082 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
10 fveq2 6771 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
11 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2756 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑋) = 𝑋))
139, 12imbi12d 345 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑊 → (𝐹𝑥) = 𝑥) ↔ (𝑋 𝑊 → (𝐹𝑋) = 𝑋)))
1413rspccv 3558 . . . 4 (∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥) → (𝑋𝐵 → (𝑋 𝑊 → (𝐹𝑋) = 𝑋)))
1514impd 411 . . 3 (∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥) → ((𝑋𝐵𝑋 𝑊) → (𝐹𝑋) = 𝑋))
168, 15syl6 35 . 2 ((𝐾𝑉𝑊𝐻) → (𝐹𝐷 → ((𝑋𝐵𝑋 𝑊) → (𝐹𝑋) = 𝑋)))
17163imp 1110 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066   class class class wbr 5079  cfv 6432  Basecbs 16910  lecple 16967  LHypclh 37994  LAutclaut 37995  LDilcldil 38110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ldil 38114
This theorem is referenced by:  ldilcnv  38125  ldilco  38126  ltrnval1  38144
  Copyright terms: Public domain W3C validator