MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsmm Structured version   Visualization version   GIF version

Theorem lindsmm 21234
Description: Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindsmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))

Proof of Theorem lindsmm
StepHypRef Expression
1 ibar 529 . . . 4 (𝐹𝐵 → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
213ad2ant3 1135 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
3 f1oi 6822 . . . . . 6 ( I ↾ 𝐹):𝐹1-1-onto𝐹
4 f1of 6784 . . . . . 6 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
53, 4ax-mp 5 . . . . 5 ( I ↾ 𝐹):𝐹𝐹
6 simp3 1138 . . . . 5 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝐹𝐵)
7 fss 6685 . . . . 5 ((( I ↾ 𝐹):𝐹𝐹𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
85, 6, 7sylancr 587 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
9 lindfmm.b . . . . 5 𝐵 = (Base‘𝑆)
10 lindfmm.c . . . . 5 𝐶 = (Base‘𝑇)
119, 10lindfmm 21233 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶 ∧ ( I ↾ 𝐹):𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
128, 11syld3an3 1409 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
132, 12bitr3d 280 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
14 lmhmlmod1 20494 . . . 4 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
15143ad2ant1 1133 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑆 ∈ LMod)
169islinds 21215 . . 3 (𝑆 ∈ LMod → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
1715, 16syl 17 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
18 lmhmlmod2 20493 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
19183ad2ant1 1133 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑇 ∈ LMod)
2019adantr 481 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → 𝑇 ∈ LMod)
21 simpr 485 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) ∈ (LIndS‘𝑇))
22 f1ores 6798 . . . . . . . 8 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1-onto→(𝐺𝐹))
23 f1of1 6783 . . . . . . . 8 ((𝐺𝐹):𝐹1-1-onto→(𝐺𝐹) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2422, 23syl 17 . . . . . . 7 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
25243adant1 1130 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2625adantr 481 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
27 f1linds 21231 . . . . 5 ((𝑇 ∈ LMod ∧ (𝐺𝐹) ∈ (LIndS‘𝑇) ∧ (𝐺𝐹):𝐹1-1→(𝐺𝐹)) → (𝐺𝐹) LIndF 𝑇)
2820, 21, 26, 27syl3anc 1371 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) LIndF 𝑇)
29 df-ima 5646 . . . . 5 (𝐺𝐹) = ran (𝐺𝐹)
30 lindfrn 21227 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3119, 30sylan 580 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3229, 31eqeltrid 2842 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → (𝐺𝐹) ∈ (LIndS‘𝑇))
3328, 32impbida 799 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺𝐹) LIndF 𝑇))
34 coires1 6216 . . . 4 (𝐺 ∘ ( I ↾ 𝐹)) = (𝐺𝐹)
3534breq1i 5112 . . 3 ((𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇 ↔ (𝐺𝐹) LIndF 𝑇)
3633, 35bitr4di 288 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
3713, 17, 363bitr4d 310 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910   class class class wbr 5105   I cid 5530  ran crn 5634  cres 5635  cima 5636  ccom 5637  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Basecbs 17083  LModclmod 20322   LMHom clmhm 20480   LIndF clindf 21210  LIndSclinds 21211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lmhm 20483  df-lindf 21212  df-linds 21213
This theorem is referenced by:  lindsmm2  21235
  Copyright terms: Public domain W3C validator