MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsmm Structured version   Visualization version   GIF version

Theorem lindsmm 21793
Description: Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindsmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))

Proof of Theorem lindsmm
StepHypRef Expression
1 ibar 528 . . . 4 (𝐹𝐵 → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
213ad2ant3 1135 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
3 f1oi 6861 . . . . . 6 ( I ↾ 𝐹):𝐹1-1-onto𝐹
4 f1of 6823 . . . . . 6 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
53, 4ax-mp 5 . . . . 5 ( I ↾ 𝐹):𝐹𝐹
6 simp3 1138 . . . . 5 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝐹𝐵)
7 fss 6727 . . . . 5 ((( I ↾ 𝐹):𝐹𝐹𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
85, 6, 7sylancr 587 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
9 lindfmm.b . . . . 5 𝐵 = (Base‘𝑆)
10 lindfmm.c . . . . 5 𝐶 = (Base‘𝑇)
119, 10lindfmm 21792 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶 ∧ ( I ↾ 𝐹):𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
128, 11syld3an3 1411 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
132, 12bitr3d 281 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
14 lmhmlmod1 20996 . . . 4 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
15143ad2ant1 1133 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑆 ∈ LMod)
169islinds 21774 . . 3 (𝑆 ∈ LMod → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
1715, 16syl 17 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
18 lmhmlmod2 20995 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
19183ad2ant1 1133 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑇 ∈ LMod)
2019adantr 480 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → 𝑇 ∈ LMod)
21 simpr 484 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) ∈ (LIndS‘𝑇))
22 f1ores 6837 . . . . . . . 8 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1-onto→(𝐺𝐹))
23 f1of1 6822 . . . . . . . 8 ((𝐺𝐹):𝐹1-1-onto→(𝐺𝐹) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2422, 23syl 17 . . . . . . 7 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
25243adant1 1130 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2625adantr 480 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
27 f1linds 21790 . . . . 5 ((𝑇 ∈ LMod ∧ (𝐺𝐹) ∈ (LIndS‘𝑇) ∧ (𝐺𝐹):𝐹1-1→(𝐺𝐹)) → (𝐺𝐹) LIndF 𝑇)
2820, 21, 26, 27syl3anc 1373 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) LIndF 𝑇)
29 df-ima 5672 . . . . 5 (𝐺𝐹) = ran (𝐺𝐹)
30 lindfrn 21786 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3119, 30sylan 580 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3229, 31eqeltrid 2839 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → (𝐺𝐹) ∈ (LIndS‘𝑇))
3328, 32impbida 800 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺𝐹) LIndF 𝑇))
34 coires1 6258 . . . 4 (𝐺 ∘ ( I ↾ 𝐹)) = (𝐺𝐹)
3534breq1i 5131 . . 3 ((𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇 ↔ (𝐺𝐹) LIndF 𝑇)
3633, 35bitr4di 289 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
3713, 17, 363bitr4d 311 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931   class class class wbr 5124   I cid 5552  ran crn 5660  cres 5661  cima 5662  ccom 5663  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Basecbs 17233  LModclmod 20822   LMHom clmhm 20982   LIndF clindf 21769  LIndSclinds 21770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lindf 21771  df-linds 21772
This theorem is referenced by:  lindsmm2  21794
  Copyright terms: Public domain W3C validator