MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsmm Structured version   Visualization version   GIF version

Theorem lindsmm 21866
Description: Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindsmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))

Proof of Theorem lindsmm
StepHypRef Expression
1 ibar 528 . . . 4 (𝐹𝐵 → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
213ad2ant3 1134 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
3 f1oi 6887 . . . . . 6 ( I ↾ 𝐹):𝐹1-1-onto𝐹
4 f1of 6849 . . . . . 6 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
53, 4ax-mp 5 . . . . 5 ( I ↾ 𝐹):𝐹𝐹
6 simp3 1137 . . . . 5 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝐹𝐵)
7 fss 6753 . . . . 5 ((( I ↾ 𝐹):𝐹𝐹𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
85, 6, 7sylancr 587 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
9 lindfmm.b . . . . 5 𝐵 = (Base‘𝑆)
10 lindfmm.c . . . . 5 𝐶 = (Base‘𝑇)
119, 10lindfmm 21865 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶 ∧ ( I ↾ 𝐹):𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
128, 11syld3an3 1408 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
132, 12bitr3d 281 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
14 lmhmlmod1 21050 . . . 4 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
15143ad2ant1 1132 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑆 ∈ LMod)
169islinds 21847 . . 3 (𝑆 ∈ LMod → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
1715, 16syl 17 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
18 lmhmlmod2 21049 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
19183ad2ant1 1132 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑇 ∈ LMod)
2019adantr 480 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → 𝑇 ∈ LMod)
21 simpr 484 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) ∈ (LIndS‘𝑇))
22 f1ores 6863 . . . . . . . 8 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1-onto→(𝐺𝐹))
23 f1of1 6848 . . . . . . . 8 ((𝐺𝐹):𝐹1-1-onto→(𝐺𝐹) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2422, 23syl 17 . . . . . . 7 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
25243adant1 1129 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2625adantr 480 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
27 f1linds 21863 . . . . 5 ((𝑇 ∈ LMod ∧ (𝐺𝐹) ∈ (LIndS‘𝑇) ∧ (𝐺𝐹):𝐹1-1→(𝐺𝐹)) → (𝐺𝐹) LIndF 𝑇)
2820, 21, 26, 27syl3anc 1370 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) LIndF 𝑇)
29 df-ima 5702 . . . . 5 (𝐺𝐹) = ran (𝐺𝐹)
30 lindfrn 21859 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3119, 30sylan 580 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3229, 31eqeltrid 2843 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → (𝐺𝐹) ∈ (LIndS‘𝑇))
3328, 32impbida 801 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺𝐹) LIndF 𝑇))
34 coires1 6286 . . . 4 (𝐺 ∘ ( I ↾ 𝐹)) = (𝐺𝐹)
3534breq1i 5155 . . 3 ((𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇 ↔ (𝐺𝐹) LIndF 𝑇)
3633, 35bitr4di 289 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
3713, 17, 363bitr4d 311 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148   I cid 5582  ran crn 5690  cres 5691  cima 5692  ccom 5693  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  LModclmod 20875   LMHom clmhm 21036   LIndF clindf 21842  LIndSclinds 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lindf 21844  df-linds 21845
This theorem is referenced by:  lindsmm2  21867
  Copyright terms: Public domain W3C validator