Proof of Theorem lindsmm
| Step | Hyp | Ref
| Expression |
| 1 | | ibar 528 |
. . . 4
⊢ (𝐹 ⊆ 𝐵 → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) |
| 2 | 1 | 3ad2ant3 1135 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) |
| 3 | | f1oi 6861 |
. . . . . 6
⊢ ( I
↾ 𝐹):𝐹–1-1-onto→𝐹 |
| 4 | | f1of 6823 |
. . . . . 6
⊢ (( I
↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹⟶𝐹) |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ 𝐹):𝐹⟶𝐹 |
| 6 | | simp3 1138 |
. . . . 5
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝐹 ⊆ 𝐵) |
| 7 | | fss 6727 |
. . . . 5
⊢ ((( I
↾ 𝐹):𝐹⟶𝐹 ∧ 𝐹 ⊆ 𝐵) → ( I ↾ 𝐹):𝐹⟶𝐵) |
| 8 | 5, 6, 7 | sylancr 587 |
. . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ( I ↾ 𝐹):𝐹⟶𝐵) |
| 9 | | lindfmm.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
| 10 | | lindfmm.c |
. . . . 5
⊢ 𝐶 = (Base‘𝑇) |
| 11 | 9, 10 | lindfmm 21792 |
. . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ ( I ↾ 𝐹):𝐹⟶𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) |
| 12 | 8, 11 | syld3an3 1411 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) |
| 13 | 2, 12 | bitr3d 281 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) |
| 14 | | lmhmlmod1 20996 |
. . . 4
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 15 | 14 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝑆 ∈ LMod) |
| 16 | 9 | islinds 21774 |
. . 3
⊢ (𝑆 ∈ LMod → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) |
| 17 | 15, 16 | syl 17 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) |
| 18 | | lmhmlmod2 20995 |
. . . . . . 7
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
| 19 | 18 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝑇 ∈ LMod) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → 𝑇 ∈ LMod) |
| 21 | | simpr 484 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) |
| 22 | | f1ores 6837 |
. . . . . . . 8
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1-onto→(𝐺 “ 𝐹)) |
| 23 | | f1of1 6822 |
. . . . . . . 8
⊢ ((𝐺 ↾ 𝐹):𝐹–1-1-onto→(𝐺 “ 𝐹) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) |
| 24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) |
| 25 | 24 | 3adant1 1130 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) |
| 26 | 25 | adantr 480 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) |
| 27 | | f1linds 21790 |
. . . . 5
⊢ ((𝑇 ∈ LMod ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ∧ (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) → (𝐺 ↾ 𝐹) LIndF 𝑇) |
| 28 | 20, 21, 26, 27 | syl3anc 1373 |
. . . 4
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 ↾ 𝐹) LIndF 𝑇) |
| 29 | | df-ima 5672 |
. . . . 5
⊢ (𝐺 “ 𝐹) = ran (𝐺 ↾ 𝐹) |
| 30 | | lindfrn 21786 |
. . . . . 6
⊢ ((𝑇 ∈ LMod ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → ran (𝐺 ↾ 𝐹) ∈ (LIndS‘𝑇)) |
| 31 | 19, 30 | sylan 580 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → ran (𝐺 ↾ 𝐹) ∈ (LIndS‘𝑇)) |
| 32 | 29, 31 | eqeltrid 2839 |
. . . 4
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) |
| 33 | 28, 32 | impbida 800 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ↾ 𝐹) LIndF 𝑇)) |
| 34 | | coires1 6258 |
. . . 4
⊢ (𝐺 ∘ ( I ↾ 𝐹)) = (𝐺 ↾ 𝐹) |
| 35 | 34 | breq1i 5131 |
. . 3
⊢ ((𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇 ↔ (𝐺 ↾ 𝐹) LIndF 𝑇) |
| 36 | 33, 35 | bitr4di 289 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) |
| 37 | 13, 17, 36 | 3bitr4d 311 |
1
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇))) |