MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsmm Structured version   Visualization version   GIF version

Theorem lindsmm 21744
Description: Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindsmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))

Proof of Theorem lindsmm
StepHypRef Expression
1 ibar 528 . . . 4 (𝐹𝐵 → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
213ad2ant3 1135 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
3 f1oi 6841 . . . . . 6 ( I ↾ 𝐹):𝐹1-1-onto𝐹
4 f1of 6803 . . . . . 6 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
53, 4ax-mp 5 . . . . 5 ( I ↾ 𝐹):𝐹𝐹
6 simp3 1138 . . . . 5 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝐹𝐵)
7 fss 6707 . . . . 5 ((( I ↾ 𝐹):𝐹𝐹𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
85, 6, 7sylancr 587 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
9 lindfmm.b . . . . 5 𝐵 = (Base‘𝑆)
10 lindfmm.c . . . . 5 𝐶 = (Base‘𝑇)
119, 10lindfmm 21743 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶 ∧ ( I ↾ 𝐹):𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
128, 11syld3an3 1411 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
132, 12bitr3d 281 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
14 lmhmlmod1 20947 . . . 4 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
15143ad2ant1 1133 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑆 ∈ LMod)
169islinds 21725 . . 3 (𝑆 ∈ LMod → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
1715, 16syl 17 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
18 lmhmlmod2 20946 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
19183ad2ant1 1133 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑇 ∈ LMod)
2019adantr 480 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → 𝑇 ∈ LMod)
21 simpr 484 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) ∈ (LIndS‘𝑇))
22 f1ores 6817 . . . . . . . 8 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1-onto→(𝐺𝐹))
23 f1of1 6802 . . . . . . . 8 ((𝐺𝐹):𝐹1-1-onto→(𝐺𝐹) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2422, 23syl 17 . . . . . . 7 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
25243adant1 1130 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2625adantr 480 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
27 f1linds 21741 . . . . 5 ((𝑇 ∈ LMod ∧ (𝐺𝐹) ∈ (LIndS‘𝑇) ∧ (𝐺𝐹):𝐹1-1→(𝐺𝐹)) → (𝐺𝐹) LIndF 𝑇)
2820, 21, 26, 27syl3anc 1373 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) LIndF 𝑇)
29 df-ima 5654 . . . . 5 (𝐺𝐹) = ran (𝐺𝐹)
30 lindfrn 21737 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3119, 30sylan 580 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3229, 31eqeltrid 2833 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → (𝐺𝐹) ∈ (LIndS‘𝑇))
3328, 32impbida 800 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺𝐹) LIndF 𝑇))
34 coires1 6240 . . . 4 (𝐺 ∘ ( I ↾ 𝐹)) = (𝐺𝐹)
3534breq1i 5117 . . 3 ((𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇 ↔ (𝐺𝐹) LIndF 𝑇)
3633, 35bitr4di 289 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
3713, 17, 363bitr4d 311 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917   class class class wbr 5110   I cid 5535  ran crn 5642  cres 5643  cima 5644  ccom 5645  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Basecbs 17186  LModclmod 20773   LMHom clmhm 20933   LIndF clindf 21720  LIndSclinds 21721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lindf 21722  df-linds 21723
This theorem is referenced by:  lindsmm2  21745
  Copyright terms: Public domain W3C validator