Proof of Theorem lindsmm
Step | Hyp | Ref
| Expression |
1 | | ibar 529 |
. . . 4
⊢ (𝐹 ⊆ 𝐵 → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) |
2 | 1 | 3ad2ant3 1134 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) |
3 | | f1oi 6754 |
. . . . . 6
⊢ ( I
↾ 𝐹):𝐹–1-1-onto→𝐹 |
4 | | f1of 6716 |
. . . . . 6
⊢ (( I
↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹⟶𝐹) |
5 | 3, 4 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ 𝐹):𝐹⟶𝐹 |
6 | | simp3 1137 |
. . . . 5
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝐹 ⊆ 𝐵) |
7 | | fss 6617 |
. . . . 5
⊢ ((( I
↾ 𝐹):𝐹⟶𝐹 ∧ 𝐹 ⊆ 𝐵) → ( I ↾ 𝐹):𝐹⟶𝐵) |
8 | 5, 6, 7 | sylancr 587 |
. . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ( I ↾ 𝐹):𝐹⟶𝐵) |
9 | | lindfmm.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
10 | | lindfmm.c |
. . . . 5
⊢ 𝐶 = (Base‘𝑇) |
11 | 9, 10 | lindfmm 21034 |
. . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ ( I ↾ 𝐹):𝐹⟶𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) |
12 | 8, 11 | syld3an3 1408 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) |
13 | 2, 12 | bitr3d 280 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) |
14 | | lmhmlmod1 20295 |
. . . 4
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
15 | 14 | 3ad2ant1 1132 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝑆 ∈ LMod) |
16 | 9 | islinds 21016 |
. . 3
⊢ (𝑆 ∈ LMod → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) |
17 | 15, 16 | syl 17 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) |
18 | | lmhmlmod2 20294 |
. . . . . . 7
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
19 | 18 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝑇 ∈ LMod) |
20 | 19 | adantr 481 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → 𝑇 ∈ LMod) |
21 | | simpr 485 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) |
22 | | f1ores 6730 |
. . . . . . . 8
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1-onto→(𝐺 “ 𝐹)) |
23 | | f1of1 6715 |
. . . . . . . 8
⊢ ((𝐺 ↾ 𝐹):𝐹–1-1-onto→(𝐺 “ 𝐹) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) |
25 | 24 | 3adant1 1129 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) |
26 | 25 | adantr 481 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) |
27 | | f1linds 21032 |
. . . . 5
⊢ ((𝑇 ∈ LMod ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ∧ (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) → (𝐺 ↾ 𝐹) LIndF 𝑇) |
28 | 20, 21, 26, 27 | syl3anc 1370 |
. . . 4
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 ↾ 𝐹) LIndF 𝑇) |
29 | | df-ima 5602 |
. . . . 5
⊢ (𝐺 “ 𝐹) = ran (𝐺 ↾ 𝐹) |
30 | | lindfrn 21028 |
. . . . . 6
⊢ ((𝑇 ∈ LMod ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → ran (𝐺 ↾ 𝐹) ∈ (LIndS‘𝑇)) |
31 | 19, 30 | sylan 580 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → ran (𝐺 ↾ 𝐹) ∈ (LIndS‘𝑇)) |
32 | 29, 31 | eqeltrid 2843 |
. . . 4
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) |
33 | 28, 32 | impbida 798 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ↾ 𝐹) LIndF 𝑇)) |
34 | | coires1 6168 |
. . . 4
⊢ (𝐺 ∘ ( I ↾ 𝐹)) = (𝐺 ↾ 𝐹) |
35 | 34 | breq1i 5081 |
. . 3
⊢ ((𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇 ↔ (𝐺 ↾ 𝐹) LIndF 𝑇) |
36 | 33, 35 | bitr4di 289 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) |
37 | 13, 17, 36 | 3bitr4d 311 |
1
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇))) |