Proof of Theorem lindsmm
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ibar 528 | . . . 4
⊢ (𝐹 ⊆ 𝐵 → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) | 
| 2 | 1 | 3ad2ant3 1136 | . . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) | 
| 3 |  | f1oi 6886 | . . . . . 6
⊢ ( I
↾ 𝐹):𝐹–1-1-onto→𝐹 | 
| 4 |  | f1of 6848 | . . . . . 6
⊢ (( I
↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹⟶𝐹) | 
| 5 | 3, 4 | ax-mp 5 | . . . . 5
⊢ ( I
↾ 𝐹):𝐹⟶𝐹 | 
| 6 |  | simp3 1139 | . . . . 5
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝐹 ⊆ 𝐵) | 
| 7 |  | fss 6752 | . . . . 5
⊢ ((( I
↾ 𝐹):𝐹⟶𝐹 ∧ 𝐹 ⊆ 𝐵) → ( I ↾ 𝐹):𝐹⟶𝐵) | 
| 8 | 5, 6, 7 | sylancr 587 | . . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ( I ↾ 𝐹):𝐹⟶𝐵) | 
| 9 |  | lindfmm.b | . . . . 5
⊢ 𝐵 = (Base‘𝑆) | 
| 10 |  | lindfmm.c | . . . . 5
⊢ 𝐶 = (Base‘𝑇) | 
| 11 | 9, 10 | lindfmm 21847 | . . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ ( I ↾ 𝐹):𝐹⟶𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) | 
| 12 | 8, 11 | syld3an3 1411 | . . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) | 
| 13 | 2, 12 | bitr3d 281 | . 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) | 
| 14 |  | lmhmlmod1 21032 | . . . 4
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | 
| 15 | 14 | 3ad2ant1 1134 | . . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝑆 ∈ LMod) | 
| 16 | 9 | islinds 21829 | . . 3
⊢ (𝑆 ∈ LMod → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) | 
| 17 | 15, 16 | syl 17 | . 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆))) | 
| 18 |  | lmhmlmod2 21031 | . . . . . . 7
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | 
| 19 | 18 | 3ad2ant1 1134 | . . . . . 6
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → 𝑇 ∈ LMod) | 
| 20 | 19 | adantr 480 | . . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → 𝑇 ∈ LMod) | 
| 21 |  | simpr 484 | . . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) | 
| 22 |  | f1ores 6862 | . . . . . . . 8
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1-onto→(𝐺 “ 𝐹)) | 
| 23 |  | f1of1 6847 | . . . . . . . 8
⊢ ((𝐺 ↾ 𝐹):𝐹–1-1-onto→(𝐺 “ 𝐹) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) | 
| 24 | 22, 23 | syl 17 | . . . . . . 7
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) | 
| 25 | 24 | 3adant1 1131 | . . . . . 6
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) | 
| 26 | 25 | adantr 480 | . . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) | 
| 27 |  | f1linds 21845 | . . . . 5
⊢ ((𝑇 ∈ LMod ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ∧ (𝐺 ↾ 𝐹):𝐹–1-1→(𝐺 “ 𝐹)) → (𝐺 ↾ 𝐹) LIndF 𝑇) | 
| 28 | 20, 21, 26, 27 | syl3anc 1373 | . . . 4
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) → (𝐺 ↾ 𝐹) LIndF 𝑇) | 
| 29 |  | df-ima 5698 | . . . . 5
⊢ (𝐺 “ 𝐹) = ran (𝐺 ↾ 𝐹) | 
| 30 |  | lindfrn 21841 | . . . . . 6
⊢ ((𝑇 ∈ LMod ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → ran (𝐺 ↾ 𝐹) ∈ (LIndS‘𝑇)) | 
| 31 | 19, 30 | sylan 580 | . . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → ran (𝐺 ↾ 𝐹) ∈ (LIndS‘𝑇)) | 
| 32 | 29, 31 | eqeltrid 2845 | . . . 4
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) ∧ (𝐺 ↾ 𝐹) LIndF 𝑇) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) | 
| 33 | 28, 32 | impbida 801 | . . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ↾ 𝐹) LIndF 𝑇)) | 
| 34 |  | coires1 6284 | . . . 4
⊢ (𝐺 ∘ ( I ↾ 𝐹)) = (𝐺 ↾ 𝐹) | 
| 35 | 34 | breq1i 5150 | . . 3
⊢ ((𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇 ↔ (𝐺 ↾ 𝐹) LIndF 𝑇) | 
| 36 | 33, 35 | bitr4di 289 | . 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → ((𝐺 “ 𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇)) | 
| 37 | 13, 17, 36 | 3bitr4d 311 | 1
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇))) |