MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsmm Structured version   Visualization version   GIF version

Theorem lindsmm 21683
Description: Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindsmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))

Proof of Theorem lindsmm
StepHypRef Expression
1 ibar 528 . . . 4 (𝐹𝐵 → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
213ad2ant3 1132 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
3 f1oi 6861 . . . . . 6 ( I ↾ 𝐹):𝐹1-1-onto𝐹
4 f1of 6823 . . . . . 6 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
53, 4ax-mp 5 . . . . 5 ( I ↾ 𝐹):𝐹𝐹
6 simp3 1135 . . . . 5 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝐹𝐵)
7 fss 6724 . . . . 5 ((( I ↾ 𝐹):𝐹𝐹𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
85, 6, 7sylancr 586 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ( I ↾ 𝐹):𝐹𝐵)
9 lindfmm.b . . . . 5 𝐵 = (Base‘𝑆)
10 lindfmm.c . . . . 5 𝐶 = (Base‘𝑇)
119, 10lindfmm 21682 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶 ∧ ( I ↾ 𝐹):𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
128, 11syld3an3 1406 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (( I ↾ 𝐹) LIndF 𝑆 ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
132, 12bitr3d 281 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
14 lmhmlmod1 20866 . . . 4 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
15143ad2ant1 1130 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑆 ∈ LMod)
169islinds 21664 . . 3 (𝑆 ∈ LMod → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
1715, 16syl 17 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐹𝐵 ∧ ( I ↾ 𝐹) LIndF 𝑆)))
18 lmhmlmod2 20865 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
19183ad2ant1 1130 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → 𝑇 ∈ LMod)
2019adantr 480 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → 𝑇 ∈ LMod)
21 simpr 484 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) ∈ (LIndS‘𝑇))
22 f1ores 6837 . . . . . . . 8 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1-onto→(𝐺𝐹))
23 f1of1 6822 . . . . . . . 8 ((𝐺𝐹):𝐹1-1-onto→(𝐺𝐹) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2422, 23syl 17 . . . . . . 7 ((𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
25243adant1 1127 . . . . . 6 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
2625adantr 480 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹):𝐹1-1→(𝐺𝐹))
27 f1linds 21680 . . . . 5 ((𝑇 ∈ LMod ∧ (𝐺𝐹) ∈ (LIndS‘𝑇) ∧ (𝐺𝐹):𝐹1-1→(𝐺𝐹)) → (𝐺𝐹) LIndF 𝑇)
2820, 21, 26, 27syl3anc 1368 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) ∈ (LIndS‘𝑇)) → (𝐺𝐹) LIndF 𝑇)
29 df-ima 5679 . . . . 5 (𝐺𝐹) = ran (𝐺𝐹)
30 lindfrn 21676 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3119, 30sylan 579 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → ran (𝐺𝐹) ∈ (LIndS‘𝑇))
3229, 31eqeltrid 2829 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → (𝐺𝐹) ∈ (LIndS‘𝑇))
3328, 32impbida 798 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺𝐹) LIndF 𝑇))
34 coires1 6253 . . . 4 (𝐺 ∘ ( I ↾ 𝐹)) = (𝐺𝐹)
3534breq1i 5145 . . 3 ((𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇 ↔ (𝐺𝐹) LIndF 𝑇)
3633, 35bitr4di 289 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → ((𝐺𝐹) ∈ (LIndS‘𝑇) ↔ (𝐺 ∘ ( I ↾ 𝐹)) LIndF 𝑇))
3713, 17, 363bitr4d 311 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺𝐹) ∈ (LIndS‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wss 3940   class class class wbr 5138   I cid 5563  ran crn 5667  cres 5668  cima 5669  ccom 5670  wf 6529  1-1wf1 6530  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  Basecbs 17140  LModclmod 20691   LMHom clmhm 20852   LIndF clindf 21659  LIndSclinds 21660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-grp 18853  df-minusg 18854  df-sbg 18855  df-subg 19035  df-ghm 19124  df-mgp 20025  df-ur 20072  df-ring 20125  df-lmod 20693  df-lss 20764  df-lsp 20804  df-lmhm 20855  df-lindf 21661  df-linds 21662
This theorem is referenced by:  lindsmm2  21684
  Copyright terms: Public domain W3C validator