MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslinds Structured version   Visualization version   GIF version

Theorem lsslinds 21038
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslinds ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))

Proof of Theorem lsslinds
StepHypRef Expression
1 eqid 2738 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2 lsslindf.u . . . . . . . 8 𝑈 = (LSubSp‘𝑊)
31, 2lssss 20198 . . . . . . 7 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
4 lsslindf.x . . . . . . . 8 𝑋 = (𝑊s 𝑆)
54, 1ressbas2 16949 . . . . . . 7 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
63, 5syl 17 . . . . . 6 (𝑆𝑈𝑆 = (Base‘𝑋))
763ad2ant2 1133 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 = (Base‘𝑋))
87sseq2d 3953 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑋)))
933ad2ant2 1133 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
10 sstr2 3928 . . . . . 6 (𝐹𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝐹 ⊆ (Base‘𝑊)))
119, 10mpan9 507 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹𝑆) → 𝐹 ⊆ (Base‘𝑊))
12 simpl3 1192 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹 ⊆ (Base‘𝑊)) → 𝐹𝑆)
1311, 12impbida 798 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑊)))
148, 13bitr3d 280 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ⊆ (Base‘𝑋) ↔ 𝐹 ⊆ (Base‘𝑊)))
15 rnresi 5983 . . . . 5 ran ( I ↾ 𝐹) = 𝐹
1615sseq1i 3949 . . . 4 (ran ( I ↾ 𝐹) ⊆ 𝑆𝐹𝑆)
172, 4lsslindf 21037 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran ( I ↾ 𝐹) ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1816, 17syl3an3br 1407 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1914, 18anbi12d 631 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → ((𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
204ovexi 7309 . . 3 𝑋 ∈ V
21 eqid 2738 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2221islinds 21016 . . 3 (𝑋 ∈ V → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
2320, 22mp1i 13 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
241islinds 21016 . . 3 (𝑊 ∈ LMod → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
25243ad2ant1 1132 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
2619, 23, 253bitr4d 311 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074   I cid 5488  ran crn 5590  cres 5591  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  LModclmod 20123  LSubSpclss 20193   LIndF clindf 21011  LIndSclinds 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lindf 21013  df-linds 21014
This theorem is referenced by:  islinds3  21041  lssdimle  31691  dimkerim  31708  fedgmullem2  31711
  Copyright terms: Public domain W3C validator