MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslinds Structured version   Visualization version   GIF version

Theorem lsslinds 21776
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslinds ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))

Proof of Theorem lsslinds
StepHypRef Expression
1 eqid 2734 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2 lsslindf.u . . . . . . . 8 𝑈 = (LSubSp‘𝑊)
31, 2lssss 20878 . . . . . . 7 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
4 lsslindf.x . . . . . . . 8 𝑋 = (𝑊s 𝑆)
54, 1ressbas2 17244 . . . . . . 7 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
63, 5syl 17 . . . . . 6 (𝑆𝑈𝑆 = (Base‘𝑋))
763ad2ant2 1134 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 = (Base‘𝑋))
87sseq2d 3989 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑋)))
933ad2ant2 1134 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
10 sstr2 3963 . . . . . 6 (𝐹𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝐹 ⊆ (Base‘𝑊)))
119, 10mpan9 506 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹𝑆) → 𝐹 ⊆ (Base‘𝑊))
12 simpl3 1193 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹 ⊆ (Base‘𝑊)) → 𝐹𝑆)
1311, 12impbida 800 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑊)))
148, 13bitr3d 281 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ⊆ (Base‘𝑋) ↔ 𝐹 ⊆ (Base‘𝑊)))
15 rnresi 6059 . . . . 5 ran ( I ↾ 𝐹) = 𝐹
1615sseq1i 3985 . . . 4 (ran ( I ↾ 𝐹) ⊆ 𝑆𝐹𝑆)
172, 4lsslindf 21775 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran ( I ↾ 𝐹) ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1816, 17syl3an3br 1409 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1914, 18anbi12d 632 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → ((𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
204ovexi 7433 . . 3 𝑋 ∈ V
21 eqid 2734 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2221islinds 21754 . . 3 (𝑋 ∈ V → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
2320, 22mp1i 13 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
241islinds 21754 . . 3 (𝑊 ∈ LMod → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
25243ad2ant1 1133 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
2619, 23, 253bitr4d 311 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3457  wss 3924   class class class wbr 5116   I cid 5544  ran crn 5652  cres 5653  cfv 6527  (class class class)co 7399  Basecbs 17213  s cress 17236  LModclmod 20802  LSubSpclss 20873   LIndF clindf 21749  LIndSclinds 21750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-sca 17272  df-vsca 17273  df-0g 17440  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18904  df-minusg 18905  df-sbg 18906  df-subg 19091  df-mgp 20086  df-ur 20127  df-ring 20180  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lindf 21751  df-linds 21752
This theorem is referenced by:  islinds3  21779  lssdimle  33563  dimkerim  33583  fedgmullem2  33586
  Copyright terms: Public domain W3C validator