Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsslinds | Structured version Visualization version GIF version |
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lsslindf.u | ⊢ 𝑈 = (LSubSp‘𝑊) |
lsslindf.x | ⊢ 𝑋 = (𝑊 ↾s 𝑆) |
Ref | Expression |
---|---|
lsslinds | ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lsslindf.u | . . . . . . . 8 ⊢ 𝑈 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 20188 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑈 → 𝑆 ⊆ (Base‘𝑊)) |
4 | lsslindf.x | . . . . . . . 8 ⊢ 𝑋 = (𝑊 ↾s 𝑆) | |
5 | 4, 1 | ressbas2 16939 | . . . . . . 7 ⊢ (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋)) |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ 𝑈 → 𝑆 = (Base‘𝑋)) |
7 | 6 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → 𝑆 = (Base‘𝑋)) |
8 | 7 | sseq2d 3958 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ 𝑆 ↔ 𝐹 ⊆ (Base‘𝑋))) |
9 | 3 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝑊)) |
10 | sstr2 3933 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝐹 ⊆ (Base‘𝑊))) | |
11 | 9, 10 | mpan9 507 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) ∧ 𝐹 ⊆ 𝑆) → 𝐹 ⊆ (Base‘𝑊)) |
12 | simpl3 1192 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) ∧ 𝐹 ⊆ (Base‘𝑊)) → 𝐹 ⊆ 𝑆) | |
13 | 11, 12 | impbida 798 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ 𝑆 ↔ 𝐹 ⊆ (Base‘𝑊))) |
14 | 8, 13 | bitr3d 280 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ (Base‘𝑋) ↔ 𝐹 ⊆ (Base‘𝑊))) |
15 | rnresi 5981 | . . . . 5 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
16 | 15 | sseq1i 3954 | . . . 4 ⊢ (ran ( I ↾ 𝐹) ⊆ 𝑆 ↔ 𝐹 ⊆ 𝑆) |
17 | 2, 4 | lsslindf 21027 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran ( I ↾ 𝐹) ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊)) |
18 | 16, 17 | syl3an3br 1407 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊)) |
19 | 14, 18 | anbi12d 631 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → ((𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
20 | 4 | ovexi 7303 | . . 3 ⊢ 𝑋 ∈ V |
21 | eqid 2740 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
22 | 21 | islinds 21006 | . . 3 ⊢ (𝑋 ∈ V → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋))) |
23 | 20, 22 | mp1i 13 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋))) |
24 | 1 | islinds 21006 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
25 | 24 | 3ad2ant1 1132 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
26 | 19, 23, 25 | 3bitr4d 311 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 class class class wbr 5079 I cid 5488 ran crn 5590 ↾ cres 5591 ‘cfv 6431 (class class class)co 7269 Basecbs 16902 ↾s cress 16931 LModclmod 20113 LSubSpclss 20183 LIndF clindf 21001 LIndSclinds 21002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ress 16932 df-plusg 16965 df-sca 16968 df-vsca 16969 df-0g 17142 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-grp 18570 df-minusg 18571 df-sbg 18572 df-subg 18742 df-mgp 19711 df-ur 19728 df-ring 19775 df-lmod 20115 df-lss 20184 df-lsp 20224 df-lindf 21003 df-linds 21004 |
This theorem is referenced by: islinds3 21031 lssdimle 31679 dimkerim 31696 fedgmullem2 31699 |
Copyright terms: Public domain | W3C validator |