Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsslinds | Structured version Visualization version GIF version |
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lsslindf.u | ⊢ 𝑈 = (LSubSp‘𝑊) |
lsslindf.x | ⊢ 𝑋 = (𝑊 ↾s 𝑆) |
Ref | Expression |
---|---|
lsslinds | ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lsslindf.u | . . . . . . . 8 ⊢ 𝑈 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 20198 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑈 → 𝑆 ⊆ (Base‘𝑊)) |
4 | lsslindf.x | . . . . . . . 8 ⊢ 𝑋 = (𝑊 ↾s 𝑆) | |
5 | 4, 1 | ressbas2 16949 | . . . . . . 7 ⊢ (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋)) |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ 𝑈 → 𝑆 = (Base‘𝑋)) |
7 | 6 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → 𝑆 = (Base‘𝑋)) |
8 | 7 | sseq2d 3953 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ 𝑆 ↔ 𝐹 ⊆ (Base‘𝑋))) |
9 | 3 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝑊)) |
10 | sstr2 3928 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝐹 ⊆ (Base‘𝑊))) | |
11 | 9, 10 | mpan9 507 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) ∧ 𝐹 ⊆ 𝑆) → 𝐹 ⊆ (Base‘𝑊)) |
12 | simpl3 1192 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) ∧ 𝐹 ⊆ (Base‘𝑊)) → 𝐹 ⊆ 𝑆) | |
13 | 11, 12 | impbida 798 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ 𝑆 ↔ 𝐹 ⊆ (Base‘𝑊))) |
14 | 8, 13 | bitr3d 280 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ (Base‘𝑋) ↔ 𝐹 ⊆ (Base‘𝑊))) |
15 | rnresi 5983 | . . . . 5 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
16 | 15 | sseq1i 3949 | . . . 4 ⊢ (ran ( I ↾ 𝐹) ⊆ 𝑆 ↔ 𝐹 ⊆ 𝑆) |
17 | 2, 4 | lsslindf 21037 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran ( I ↾ 𝐹) ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊)) |
18 | 16, 17 | syl3an3br 1407 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊)) |
19 | 14, 18 | anbi12d 631 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → ((𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
20 | 4 | ovexi 7309 | . . 3 ⊢ 𝑋 ∈ V |
21 | eqid 2738 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
22 | 21 | islinds 21016 | . . 3 ⊢ (𝑋 ∈ V → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋))) |
23 | 20, 22 | mp1i 13 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋))) |
24 | 1 | islinds 21016 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
25 | 24 | 3ad2ant1 1132 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
26 | 19, 23, 25 | 3bitr4d 311 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 I cid 5488 ran crn 5590 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 LModclmod 20123 LSubSpclss 20193 LIndF clindf 21011 LIndSclinds 21012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-sca 16978 df-vsca 16979 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lindf 21013 df-linds 21014 |
This theorem is referenced by: islinds3 21041 lssdimle 31691 dimkerim 31708 fedgmullem2 31711 |
Copyright terms: Public domain | W3C validator |