![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsslinds | Structured version Visualization version GIF version |
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lsslindf.u | β’ π = (LSubSpβπ) |
lsslindf.x | β’ π = (π βΎs π) |
Ref | Expression |
---|---|
lsslinds | β’ ((π β LMod β§ π β π β§ πΉ β π) β (πΉ β (LIndSβπ) β πΉ β (LIndSβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . . . 8 β’ (Baseβπ) = (Baseβπ) | |
2 | lsslindf.u | . . . . . . . 8 β’ π = (LSubSpβπ) | |
3 | 1, 2 | lssss 20539 | . . . . . . 7 β’ (π β π β π β (Baseβπ)) |
4 | lsslindf.x | . . . . . . . 8 β’ π = (π βΎs π) | |
5 | 4, 1 | ressbas2 17178 | . . . . . . 7 β’ (π β (Baseβπ) β π = (Baseβπ)) |
6 | 3, 5 | syl 17 | . . . . . 6 β’ (π β π β π = (Baseβπ)) |
7 | 6 | 3ad2ant2 1134 | . . . . 5 β’ ((π β LMod β§ π β π β§ πΉ β π) β π = (Baseβπ)) |
8 | 7 | sseq2d 4013 | . . . 4 β’ ((π β LMod β§ π β π β§ πΉ β π) β (πΉ β π β πΉ β (Baseβπ))) |
9 | 3 | 3ad2ant2 1134 | . . . . . 6 β’ ((π β LMod β§ π β π β§ πΉ β π) β π β (Baseβπ)) |
10 | sstr2 3988 | . . . . . 6 β’ (πΉ β π β (π β (Baseβπ) β πΉ β (Baseβπ))) | |
11 | 9, 10 | mpan9 507 | . . . . 5 β’ (((π β LMod β§ π β π β§ πΉ β π) β§ πΉ β π) β πΉ β (Baseβπ)) |
12 | simpl3 1193 | . . . . 5 β’ (((π β LMod β§ π β π β§ πΉ β π) β§ πΉ β (Baseβπ)) β πΉ β π) | |
13 | 11, 12 | impbida 799 | . . . 4 β’ ((π β LMod β§ π β π β§ πΉ β π) β (πΉ β π β πΉ β (Baseβπ))) |
14 | 8, 13 | bitr3d 280 | . . 3 β’ ((π β LMod β§ π β π β§ πΉ β π) β (πΉ β (Baseβπ) β πΉ β (Baseβπ))) |
15 | rnresi 6071 | . . . . 5 β’ ran ( I βΎ πΉ) = πΉ | |
16 | 15 | sseq1i 4009 | . . . 4 β’ (ran ( I βΎ πΉ) β π β πΉ β π) |
17 | 2, 4 | lsslindf 21376 | . . . 4 β’ ((π β LMod β§ π β π β§ ran ( I βΎ πΉ) β π) β (( I βΎ πΉ) LIndF π β ( I βΎ πΉ) LIndF π)) |
18 | 16, 17 | syl3an3br 1408 | . . 3 β’ ((π β LMod β§ π β π β§ πΉ β π) β (( I βΎ πΉ) LIndF π β ( I βΎ πΉ) LIndF π)) |
19 | 14, 18 | anbi12d 631 | . 2 β’ ((π β LMod β§ π β π β§ πΉ β π) β ((πΉ β (Baseβπ) β§ ( I βΎ πΉ) LIndF π) β (πΉ β (Baseβπ) β§ ( I βΎ πΉ) LIndF π))) |
20 | 4 | ovexi 7439 | . . 3 β’ π β V |
21 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
22 | 21 | islinds 21355 | . . 3 β’ (π β V β (πΉ β (LIndSβπ) β (πΉ β (Baseβπ) β§ ( I βΎ πΉ) LIndF π))) |
23 | 20, 22 | mp1i 13 | . 2 β’ ((π β LMod β§ π β π β§ πΉ β π) β (πΉ β (LIndSβπ) β (πΉ β (Baseβπ) β§ ( I βΎ πΉ) LIndF π))) |
24 | 1 | islinds 21355 | . . 3 β’ (π β LMod β (πΉ β (LIndSβπ) β (πΉ β (Baseβπ) β§ ( I βΎ πΉ) LIndF π))) |
25 | 24 | 3ad2ant1 1133 | . 2 β’ ((π β LMod β§ π β π β§ πΉ β π) β (πΉ β (LIndSβπ) β (πΉ β (Baseβπ) β§ ( I βΎ πΉ) LIndF π))) |
26 | 19, 23, 25 | 3bitr4d 310 | 1 β’ ((π β LMod β§ π β π β§ πΉ β π) β (πΉ β (LIndSβπ) β πΉ β (LIndSβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3947 class class class wbr 5147 I cid 5572 ran crn 5676 βΎ cres 5677 βcfv 6540 (class class class)co 7405 Basecbs 17140 βΎs cress 17169 LModclmod 20463 LSubSpclss 20534 LIndF clindf 21350 LIndSclinds 21351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-sca 17209 df-vsca 17210 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-mgp 19982 df-ur 19999 df-ring 20051 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lindf 21352 df-linds 21353 |
This theorem is referenced by: islinds3 21380 lssdimle 32680 dimkerim 32700 fedgmullem2 32703 |
Copyright terms: Public domain | W3C validator |