| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsslinds | Structured version Visualization version GIF version | ||
| Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lsslindf.u | ⊢ 𝑈 = (LSubSp‘𝑊) |
| lsslindf.x | ⊢ 𝑋 = (𝑊 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| lsslinds | ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lsslindf.u | . . . . . . . 8 ⊢ 𝑈 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20871 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑈 → 𝑆 ⊆ (Base‘𝑊)) |
| 4 | lsslindf.x | . . . . . . . 8 ⊢ 𝑋 = (𝑊 ↾s 𝑆) | |
| 5 | 4, 1 | ressbas2 17151 | . . . . . . 7 ⊢ (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋)) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ 𝑈 → 𝑆 = (Base‘𝑋)) |
| 7 | 6 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → 𝑆 = (Base‘𝑋)) |
| 8 | 7 | sseq2d 3963 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ 𝑆 ↔ 𝐹 ⊆ (Base‘𝑋))) |
| 9 | 3 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝑊)) |
| 10 | sstr2 3937 | . . . . . 6 ⊢ (𝐹 ⊆ 𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝐹 ⊆ (Base‘𝑊))) | |
| 11 | 9, 10 | mpan9 506 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) ∧ 𝐹 ⊆ 𝑆) → 𝐹 ⊆ (Base‘𝑊)) |
| 12 | simpl3 1194 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) ∧ 𝐹 ⊆ (Base‘𝑊)) → 𝐹 ⊆ 𝑆) | |
| 13 | 11, 12 | impbida 800 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ 𝑆 ↔ 𝐹 ⊆ (Base‘𝑊))) |
| 14 | 8, 13 | bitr3d 281 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ⊆ (Base‘𝑋) ↔ 𝐹 ⊆ (Base‘𝑊))) |
| 15 | rnresi 6028 | . . . . 5 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
| 16 | 15 | sseq1i 3959 | . . . 4 ⊢ (ran ( I ↾ 𝐹) ⊆ 𝑆 ↔ 𝐹 ⊆ 𝑆) |
| 17 | 2, 4 | lsslindf 21769 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran ( I ↾ 𝐹) ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊)) |
| 18 | 16, 17 | syl3an3br 1410 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊)) |
| 19 | 14, 18 | anbi12d 632 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → ((𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
| 20 | 4 | ovexi 7386 | . . 3 ⊢ 𝑋 ∈ V |
| 21 | eqid 2733 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 22 | 21 | islinds 21748 | . . 3 ⊢ (𝑋 ∈ V → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋))) |
| 23 | 20, 22 | mp1i 13 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋))) |
| 24 | 1 | islinds 21748 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
| 25 | 24 | 3ad2ant1 1133 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊))) |
| 26 | 19, 23, 25 | 3bitr4d 311 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5093 I cid 5513 ran crn 5620 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↾s cress 17143 LModclmod 20795 LSubSpclss 20866 LIndF clindf 21743 LIndSclinds 21744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-sca 17179 df-vsca 17180 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-mgp 20061 df-ur 20102 df-ring 20155 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lindf 21745 df-linds 21746 |
| This theorem is referenced by: islinds3 21773 lssdimle 33641 dimkerim 33661 fedgmullem2 33664 |
| Copyright terms: Public domain | W3C validator |