MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslinds Structured version   Visualization version   GIF version

Theorem lsslinds 21747
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslinds ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))

Proof of Theorem lsslinds
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2 lsslindf.u . . . . . . . 8 𝑈 = (LSubSp‘𝑊)
31, 2lssss 20849 . . . . . . 7 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
4 lsslindf.x . . . . . . . 8 𝑋 = (𝑊s 𝑆)
54, 1ressbas2 17215 . . . . . . 7 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
63, 5syl 17 . . . . . 6 (𝑆𝑈𝑆 = (Base‘𝑋))
763ad2ant2 1134 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 = (Base‘𝑋))
87sseq2d 3982 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑋)))
933ad2ant2 1134 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
10 sstr2 3956 . . . . . 6 (𝐹𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝐹 ⊆ (Base‘𝑊)))
119, 10mpan9 506 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹𝑆) → 𝐹 ⊆ (Base‘𝑊))
12 simpl3 1194 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹 ⊆ (Base‘𝑊)) → 𝐹𝑆)
1311, 12impbida 800 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑊)))
148, 13bitr3d 281 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ⊆ (Base‘𝑋) ↔ 𝐹 ⊆ (Base‘𝑊)))
15 rnresi 6049 . . . . 5 ran ( I ↾ 𝐹) = 𝐹
1615sseq1i 3978 . . . 4 (ran ( I ↾ 𝐹) ⊆ 𝑆𝐹𝑆)
172, 4lsslindf 21746 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran ( I ↾ 𝐹) ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1816, 17syl3an3br 1410 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1914, 18anbi12d 632 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → ((𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
204ovexi 7424 . . 3 𝑋 ∈ V
21 eqid 2730 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2221islinds 21725 . . 3 (𝑋 ∈ V → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
2320, 22mp1i 13 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
241islinds 21725 . . 3 (𝑊 ∈ LMod → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
25243ad2ant1 1133 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
2619, 23, 253bitr4d 311 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110   I cid 5535  ran crn 5642  cres 5643  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  LModclmod 20773  LSubSpclss 20844   LIndF clindf 21720  LIndSclinds 21721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-sca 17243  df-vsca 17244  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lindf 21722  df-linds 21723
This theorem is referenced by:  islinds3  21750  lssdimle  33610  dimkerim  33630  fedgmullem2  33633
  Copyright terms: Public domain W3C validator