MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslinds Structured version   Visualization version   GIF version

Theorem lsslinds 21028
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslinds ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))

Proof of Theorem lsslinds
StepHypRef Expression
1 eqid 2740 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2 lsslindf.u . . . . . . . 8 𝑈 = (LSubSp‘𝑊)
31, 2lssss 20188 . . . . . . 7 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
4 lsslindf.x . . . . . . . 8 𝑋 = (𝑊s 𝑆)
54, 1ressbas2 16939 . . . . . . 7 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
63, 5syl 17 . . . . . 6 (𝑆𝑈𝑆 = (Base‘𝑋))
763ad2ant2 1133 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 = (Base‘𝑋))
87sseq2d 3958 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑋)))
933ad2ant2 1133 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
10 sstr2 3933 . . . . . 6 (𝐹𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝐹 ⊆ (Base‘𝑊)))
119, 10mpan9 507 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹𝑆) → 𝐹 ⊆ (Base‘𝑊))
12 simpl3 1192 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹 ⊆ (Base‘𝑊)) → 𝐹𝑆)
1311, 12impbida 798 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑊)))
148, 13bitr3d 280 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ⊆ (Base‘𝑋) ↔ 𝐹 ⊆ (Base‘𝑊)))
15 rnresi 5981 . . . . 5 ran ( I ↾ 𝐹) = 𝐹
1615sseq1i 3954 . . . 4 (ran ( I ↾ 𝐹) ⊆ 𝑆𝐹𝑆)
172, 4lsslindf 21027 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran ( I ↾ 𝐹) ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1816, 17syl3an3br 1407 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1914, 18anbi12d 631 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → ((𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
204ovexi 7303 . . 3 𝑋 ∈ V
21 eqid 2740 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2221islinds 21006 . . 3 (𝑋 ∈ V → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
2320, 22mp1i 13 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
241islinds 21006 . . 3 (𝑊 ∈ LMod → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
25243ad2ant1 1132 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
2619, 23, 253bitr4d 311 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431  wss 3892   class class class wbr 5079   I cid 5488  ran crn 5590  cres 5591  cfv 6431  (class class class)co 7269  Basecbs 16902  s cress 16931  LModclmod 20113  LSubSpclss 20183   LIndF clindf 21001  LIndSclinds 21002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-sca 16968  df-vsca 16969  df-0g 17142  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-grp 18570  df-minusg 18571  df-sbg 18572  df-subg 18742  df-mgp 19711  df-ur 19728  df-ring 19775  df-lmod 20115  df-lss 20184  df-lsp 20224  df-lindf 21003  df-linds 21004
This theorem is referenced by:  islinds3  21031  lssdimle  31679  dimkerim  31696  fedgmullem2  31699
  Copyright terms: Public domain W3C validator