Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindspropd Structured version   Visualization version   GIF version

Theorem lindspropd 33337
Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.)
Hypotheses
Ref Expression
lindfpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
lindfpropd.2 (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿)))
lindfpropd.3 (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
lindfpropd.4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lindfpropd.5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
lindfpropd.6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lindfpropd.k (𝜑𝐾𝑉)
lindfpropd.l (𝜑𝐿𝑊)
Assertion
Ref Expression
lindspropd (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿))
Distinct variable groups:   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem lindspropd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lindfpropd.1 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
21sseq2d 3996 . . . 4 (𝜑 → (𝑧 ⊆ (Base‘𝐾) ↔ 𝑧 ⊆ (Base‘𝐿)))
3 lindfpropd.2 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿)))
4 lindfpropd.3 . . . . 5 (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))
5 lindfpropd.4 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
6 lindfpropd.5 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
7 lindfpropd.6 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
8 lindfpropd.k . . . . 5 (𝜑𝐾𝑉)
9 lindfpropd.l . . . . 5 (𝜑𝐿𝑊)
10 vex 3467 . . . . . . 7 𝑧 ∈ V
1110a1i 11 . . . . . 6 (𝜑𝑧 ∈ V)
1211resiexd 7217 . . . . 5 (𝜑 → ( I ↾ 𝑧) ∈ V)
131, 3, 4, 5, 6, 7, 8, 9, 12lindfpropd 33336 . . . 4 (𝜑 → (( I ↾ 𝑧) LIndF 𝐾 ↔ ( I ↾ 𝑧) LIndF 𝐿))
142, 13anbi12d 632 . . 3 (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿)))
15 eqid 2734 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
1615islinds 21782 . . . 4 (𝐾𝑉 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾)))
178, 16syl 17 . . 3 (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾)))
18 eqid 2734 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
1918islinds 21782 . . . 4 (𝐿𝑊 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿)))
209, 19syl 17 . . 3 (𝜑 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿)))
2114, 17, 203bitr4d 311 . 2 (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ 𝑧 ∈ (LIndS‘𝐿)))
2221eqrdv 2732 1 (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  wss 3931   class class class wbr 5123   I cid 5557  cres 5667  cfv 6540  (class class class)co 7412  Basecbs 17228  +gcplusg 17272  Scalarcsca 17275   ·𝑠 cvsca 17276  0gc0g 17454   LIndF clindf 21777  LIndSclinds 21778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-lss 20897  df-lsp 20937  df-lindf 21779  df-linds 21780
This theorem is referenced by:  fedgmullem2  33607
  Copyright terms: Public domain W3C validator