![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindspropd | Structured version Visualization version GIF version |
Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
Ref | Expression |
---|---|
lindfpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
lindfpropd.2 | ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) |
lindfpropd.3 | ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) |
lindfpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lindfpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) |
lindfpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
lindfpropd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
lindfpropd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
Ref | Expression |
---|---|
lindspropd | ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindfpropd.1 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
2 | 1 | sseq2d 4031 | . . . 4 ⊢ (𝜑 → (𝑧 ⊆ (Base‘𝐾) ↔ 𝑧 ⊆ (Base‘𝐿))) |
3 | lindfpropd.2 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) | |
4 | lindfpropd.3 | . . . . 5 ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) | |
5 | lindfpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
6 | lindfpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) | |
7 | lindfpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
8 | lindfpropd.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
9 | lindfpropd.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
10 | vex 3485 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ V) |
12 | 11 | resiexd 7243 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝑧) ∈ V) |
13 | 1, 3, 4, 5, 6, 7, 8, 9, 12 | lindfpropd 33422 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑧) LIndF 𝐾 ↔ ( I ↾ 𝑧) LIndF 𝐿)) |
14 | 2, 13 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
15 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | 15 | islinds 21856 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
17 | 8, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
18 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
19 | 18 | islinds 21856 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
20 | 9, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
21 | 14, 17, 20 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ 𝑧 ∈ (LIndS‘𝐿))) |
22 | 21 | eqrdv 2735 | 1 ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ⊆ wss 3966 class class class wbr 5151 I cid 5586 ↾ cres 5695 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 Scalarcsca 17310 ·𝑠 cvsca 17311 0gc0g 17495 LIndF clindf 21851 LIndSclinds 21852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-lss 20957 df-lsp 20997 df-lindf 21853 df-linds 21854 |
This theorem is referenced by: fedgmullem2 33690 |
Copyright terms: Public domain | W3C validator |