Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindspropd | Structured version Visualization version GIF version |
Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
Ref | Expression |
---|---|
lindfpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
lindfpropd.2 | ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) |
lindfpropd.3 | ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) |
lindfpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lindfpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) |
lindfpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
lindfpropd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
lindfpropd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
Ref | Expression |
---|---|
lindspropd | ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindfpropd.1 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
2 | 1 | sseq2d 3953 | . . . 4 ⊢ (𝜑 → (𝑧 ⊆ (Base‘𝐾) ↔ 𝑧 ⊆ (Base‘𝐿))) |
3 | lindfpropd.2 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) | |
4 | lindfpropd.3 | . . . . 5 ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) | |
5 | lindfpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
6 | lindfpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) | |
7 | lindfpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
8 | lindfpropd.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
9 | lindfpropd.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
10 | vex 3436 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ V) |
12 | 11 | resiexd 7092 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝑧) ∈ V) |
13 | 1, 3, 4, 5, 6, 7, 8, 9, 12 | lindfpropd 31576 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑧) LIndF 𝐾 ↔ ( I ↾ 𝑧) LIndF 𝐿)) |
14 | 2, 13 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
15 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | 15 | islinds 21016 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
17 | 8, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
18 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
19 | 18 | islinds 21016 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
20 | 9, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
21 | 14, 17, 20 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ 𝑧 ∈ (LIndS‘𝐿))) |
22 | 21 | eqrdv 2736 | 1 ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 I cid 5488 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 LIndF clindf 21011 LIndSclinds 21012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-lss 20194 df-lsp 20234 df-lindf 21013 df-linds 21014 |
This theorem is referenced by: fedgmullem2 31711 |
Copyright terms: Public domain | W3C validator |