| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindspropd | Structured version Visualization version GIF version | ||
| Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| lindfpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| lindfpropd.2 | ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) |
| lindfpropd.3 | ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) |
| lindfpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| lindfpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) |
| lindfpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| lindfpropd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| lindfpropd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| lindspropd | ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lindfpropd.1 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
| 2 | 1 | sseq2d 3987 | . . . 4 ⊢ (𝜑 → (𝑧 ⊆ (Base‘𝐾) ↔ 𝑧 ⊆ (Base‘𝐿))) |
| 3 | lindfpropd.2 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) | |
| 4 | lindfpropd.3 | . . . . 5 ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) | |
| 5 | lindfpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 6 | lindfpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) | |
| 7 | lindfpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 8 | lindfpropd.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 9 | lindfpropd.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
| 10 | vex 3459 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ V) |
| 12 | 11 | resiexd 7197 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝑧) ∈ V) |
| 13 | 1, 3, 4, 5, 6, 7, 8, 9, 12 | lindfpropd 33361 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑧) LIndF 𝐾 ↔ ( I ↾ 𝑧) LIndF 𝐿)) |
| 14 | 2, 13 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
| 15 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 16 | 15 | islinds 21724 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
| 17 | 8, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
| 18 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 19 | 18 | islinds 21724 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
| 20 | 9, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
| 21 | 14, 17, 20 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ 𝑧 ∈ (LIndS‘𝐿))) |
| 22 | 21 | eqrdv 2728 | 1 ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ⊆ wss 3922 class class class wbr 5115 I cid 5540 ↾ cres 5648 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 +gcplusg 17226 Scalarcsca 17229 ·𝑠 cvsca 17230 0gc0g 17408 LIndF clindf 21719 LIndSclinds 21720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-lss 20844 df-lsp 20884 df-lindf 21721 df-linds 21722 |
| This theorem is referenced by: fedgmullem2 33634 |
| Copyright terms: Public domain | W3C validator |