![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindspropd | Structured version Visualization version GIF version |
Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
Ref | Expression |
---|---|
lindfpropd.1 | β’ (π β (BaseβπΎ) = (BaseβπΏ)) |
lindfpropd.2 | β’ (π β (Baseβ(ScalarβπΎ)) = (Baseβ(ScalarβπΏ))) |
lindfpropd.3 | β’ (π β (0gβ(ScalarβπΎ)) = (0gβ(ScalarβπΏ))) |
lindfpropd.4 | β’ ((π β§ (π₯ β (BaseβπΎ) β§ π¦ β (BaseβπΎ))) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
lindfpropd.5 | β’ ((π β§ (π₯ β (Baseβ(ScalarβπΎ)) β§ π¦ β (BaseβπΎ))) β (π₯( Β·π βπΎ)π¦) β (BaseβπΎ)) |
lindfpropd.6 | β’ ((π β§ (π₯ β (Baseβ(ScalarβπΎ)) β§ π¦ β (BaseβπΎ))) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) |
lindfpropd.k | β’ (π β πΎ β π) |
lindfpropd.l | β’ (π β πΏ β π) |
Ref | Expression |
---|---|
lindspropd | β’ (π β (LIndSβπΎ) = (LIndSβπΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindfpropd.1 | . . . . 5 β’ (π β (BaseβπΎ) = (BaseβπΏ)) | |
2 | 1 | sseq2d 4005 | . . . 4 β’ (π β (π§ β (BaseβπΎ) β π§ β (BaseβπΏ))) |
3 | lindfpropd.2 | . . . . 5 β’ (π β (Baseβ(ScalarβπΎ)) = (Baseβ(ScalarβπΏ))) | |
4 | lindfpropd.3 | . . . . 5 β’ (π β (0gβ(ScalarβπΎ)) = (0gβ(ScalarβπΏ))) | |
5 | lindfpropd.4 | . . . . 5 β’ ((π β§ (π₯ β (BaseβπΎ) β§ π¦ β (BaseβπΎ))) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) | |
6 | lindfpropd.5 | . . . . 5 β’ ((π β§ (π₯ β (Baseβ(ScalarβπΎ)) β§ π¦ β (BaseβπΎ))) β (π₯( Β·π βπΎ)π¦) β (BaseβπΎ)) | |
7 | lindfpropd.6 | . . . . 5 β’ ((π β§ (π₯ β (Baseβ(ScalarβπΎ)) β§ π¦ β (BaseβπΎ))) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) | |
8 | lindfpropd.k | . . . . 5 β’ (π β πΎ β π) | |
9 | lindfpropd.l | . . . . 5 β’ (π β πΏ β π) | |
10 | vex 3467 | . . . . . . 7 β’ π§ β V | |
11 | 10 | a1i 11 | . . . . . 6 β’ (π β π§ β V) |
12 | 11 | resiexd 7223 | . . . . 5 β’ (π β ( I βΎ π§) β V) |
13 | 1, 3, 4, 5, 6, 7, 8, 9, 12 | lindfpropd 33145 | . . . 4 β’ (π β (( I βΎ π§) LIndF πΎ β ( I βΎ π§) LIndF πΏ)) |
14 | 2, 13 | anbi12d 630 | . . 3 β’ (π β ((π§ β (BaseβπΎ) β§ ( I βΎ π§) LIndF πΎ) β (π§ β (BaseβπΏ) β§ ( I βΎ π§) LIndF πΏ))) |
15 | eqid 2725 | . . . . 5 β’ (BaseβπΎ) = (BaseβπΎ) | |
16 | 15 | islinds 21745 | . . . 4 β’ (πΎ β π β (π§ β (LIndSβπΎ) β (π§ β (BaseβπΎ) β§ ( I βΎ π§) LIndF πΎ))) |
17 | 8, 16 | syl 17 | . . 3 β’ (π β (π§ β (LIndSβπΎ) β (π§ β (BaseβπΎ) β§ ( I βΎ π§) LIndF πΎ))) |
18 | eqid 2725 | . . . . 5 β’ (BaseβπΏ) = (BaseβπΏ) | |
19 | 18 | islinds 21745 | . . . 4 β’ (πΏ β π β (π§ β (LIndSβπΏ) β (π§ β (BaseβπΏ) β§ ( I βΎ π§) LIndF πΏ))) |
20 | 9, 19 | syl 17 | . . 3 β’ (π β (π§ β (LIndSβπΏ) β (π§ β (BaseβπΏ) β§ ( I βΎ π§) LIndF πΏ))) |
21 | 14, 17, 20 | 3bitr4d 310 | . 2 β’ (π β (π§ β (LIndSβπΎ) β π§ β (LIndSβπΏ))) |
22 | 21 | eqrdv 2723 | 1 β’ (π β (LIndSβπΎ) = (LIndSβπΏ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 β wss 3940 class class class wbr 5143 I cid 5569 βΎ cres 5674 βcfv 6542 (class class class)co 7415 Basecbs 17177 +gcplusg 17230 Scalarcsca 17233 Β·π cvsca 17234 0gc0g 17418 LIndF clindf 21740 LIndSclinds 21741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-lss 20818 df-lsp 20858 df-lindf 21742 df-linds 21743 |
This theorem is referenced by: fedgmullem2 33384 |
Copyright terms: Public domain | W3C validator |