Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindspropd | Structured version Visualization version GIF version |
Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
Ref | Expression |
---|---|
lindfpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
lindfpropd.2 | ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) |
lindfpropd.3 | ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) |
lindfpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lindfpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) |
lindfpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
lindfpropd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
lindfpropd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
Ref | Expression |
---|---|
lindspropd | ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindfpropd.1 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
2 | 1 | sseq2d 3924 | . . . 4 ⊢ (𝜑 → (𝑧 ⊆ (Base‘𝐾) ↔ 𝑧 ⊆ (Base‘𝐿))) |
3 | lindfpropd.2 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) | |
4 | lindfpropd.3 | . . . . 5 ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) | |
5 | lindfpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
6 | lindfpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) | |
7 | lindfpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
8 | lindfpropd.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
9 | lindfpropd.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
10 | vex 3413 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ V) |
12 | 11 | resiexd 6970 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝑧) ∈ V) |
13 | 1, 3, 4, 5, 6, 7, 8, 9, 12 | lindfpropd 31097 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑧) LIndF 𝐾 ↔ ( I ↾ 𝑧) LIndF 𝐿)) |
14 | 2, 13 | anbi12d 633 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
15 | eqid 2758 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | 15 | islinds 20574 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
17 | 8, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
18 | eqid 2758 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
19 | 18 | islinds 20574 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
20 | 9, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
21 | 14, 17, 20 | 3bitr4d 314 | . 2 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ 𝑧 ∈ (LIndS‘𝐿))) |
22 | 21 | eqrdv 2756 | 1 ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3858 class class class wbr 5032 I cid 5429 ↾ cres 5526 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 Scalarcsca 16626 ·𝑠 cvsca 16627 0gc0g 16771 LIndF clindf 20569 LIndSclinds 20570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-lss 19772 df-lsp 19812 df-lindf 20571 df-linds 20572 |
This theorem is referenced by: fedgmullem2 31232 |
Copyright terms: Public domain | W3C validator |