| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lindspropd | Structured version Visualization version GIF version | ||
| Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| lindfpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| lindfpropd.2 | ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) |
| lindfpropd.3 | ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) |
| lindfpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| lindfpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) |
| lindfpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| lindfpropd.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| lindfpropd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| lindspropd | ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lindfpropd.1 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
| 2 | 1 | sseq2d 3967 | . . . 4 ⊢ (𝜑 → (𝑧 ⊆ (Base‘𝐾) ↔ 𝑧 ⊆ (Base‘𝐿))) |
| 3 | lindfpropd.2 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿))) | |
| 4 | lindfpropd.3 | . . . . 5 ⊢ (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿))) | |
| 5 | lindfpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 6 | lindfpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ (Base‘𝐾)) | |
| 7 | lindfpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 8 | lindfpropd.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 9 | lindfpropd.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑊) | |
| 10 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ V) |
| 12 | 11 | resiexd 7150 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝑧) ∈ V) |
| 13 | 1, 3, 4, 5, 6, 7, 8, 9, 12 | lindfpropd 33342 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝑧) LIndF 𝐾 ↔ ( I ↾ 𝑧) LIndF 𝐿)) |
| 14 | 2, 13 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
| 15 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 16 | 15 | islinds 21744 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
| 17 | 8, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ( I ↾ 𝑧) LIndF 𝐾))) |
| 18 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 19 | 18 | islinds 21744 | . . . 4 ⊢ (𝐿 ∈ 𝑊 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
| 20 | 9, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ( I ↾ 𝑧) LIndF 𝐿))) |
| 21 | 14, 17, 20 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑧 ∈ (LIndS‘𝐾) ↔ 𝑧 ∈ (LIndS‘𝐿))) |
| 22 | 21 | eqrdv 2729 | 1 ⊢ (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 I cid 5510 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Scalarcsca 17161 ·𝑠 cvsca 17162 0gc0g 17340 LIndF clindf 21739 LIndSclinds 21740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-lss 20863 df-lsp 20903 df-lindf 21741 df-linds 21742 |
| This theorem is referenced by: fedgmullem2 33638 |
| Copyright terms: Public domain | W3C validator |