![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindspropd | Structured version Visualization version GIF version |
Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.) |
Ref | Expression |
---|---|
lindfpropd.1 | β’ (π β (BaseβπΎ) = (BaseβπΏ)) |
lindfpropd.2 | β’ (π β (Baseβ(ScalarβπΎ)) = (Baseβ(ScalarβπΏ))) |
lindfpropd.3 | β’ (π β (0gβ(ScalarβπΎ)) = (0gβ(ScalarβπΏ))) |
lindfpropd.4 | β’ ((π β§ (π₯ β (BaseβπΎ) β§ π¦ β (BaseβπΎ))) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
lindfpropd.5 | β’ ((π β§ (π₯ β (Baseβ(ScalarβπΎ)) β§ π¦ β (BaseβπΎ))) β (π₯( Β·π βπΎ)π¦) β (BaseβπΎ)) |
lindfpropd.6 | β’ ((π β§ (π₯ β (Baseβ(ScalarβπΎ)) β§ π¦ β (BaseβπΎ))) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) |
lindfpropd.k | β’ (π β πΎ β π) |
lindfpropd.l | β’ (π β πΏ β π) |
Ref | Expression |
---|---|
lindspropd | β’ (π β (LIndSβπΎ) = (LIndSβπΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindfpropd.1 | . . . . 5 β’ (π β (BaseβπΎ) = (BaseβπΏ)) | |
2 | 1 | sseq2d 4013 | . . . 4 β’ (π β (π§ β (BaseβπΎ) β π§ β (BaseβπΏ))) |
3 | lindfpropd.2 | . . . . 5 β’ (π β (Baseβ(ScalarβπΎ)) = (Baseβ(ScalarβπΏ))) | |
4 | lindfpropd.3 | . . . . 5 β’ (π β (0gβ(ScalarβπΎ)) = (0gβ(ScalarβπΏ))) | |
5 | lindfpropd.4 | . . . . 5 β’ ((π β§ (π₯ β (BaseβπΎ) β§ π¦ β (BaseβπΎ))) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) | |
6 | lindfpropd.5 | . . . . 5 β’ ((π β§ (π₯ β (Baseβ(ScalarβπΎ)) β§ π¦ β (BaseβπΎ))) β (π₯( Β·π βπΎ)π¦) β (BaseβπΎ)) | |
7 | lindfpropd.6 | . . . . 5 β’ ((π β§ (π₯ β (Baseβ(ScalarβπΎ)) β§ π¦ β (BaseβπΎ))) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) | |
8 | lindfpropd.k | . . . . 5 β’ (π β πΎ β π) | |
9 | lindfpropd.l | . . . . 5 β’ (π β πΏ β π) | |
10 | vex 3478 | . . . . . . 7 β’ π§ β V | |
11 | 10 | a1i 11 | . . . . . 6 β’ (π β π§ β V) |
12 | 11 | resiexd 7214 | . . . . 5 β’ (π β ( I βΎ π§) β V) |
13 | 1, 3, 4, 5, 6, 7, 8, 9, 12 | lindfpropd 32486 | . . . 4 β’ (π β (( I βΎ π§) LIndF πΎ β ( I βΎ π§) LIndF πΏ)) |
14 | 2, 13 | anbi12d 631 | . . 3 β’ (π β ((π§ β (BaseβπΎ) β§ ( I βΎ π§) LIndF πΎ) β (π§ β (BaseβπΏ) β§ ( I βΎ π§) LIndF πΏ))) |
15 | eqid 2732 | . . . . 5 β’ (BaseβπΎ) = (BaseβπΎ) | |
16 | 15 | islinds 21355 | . . . 4 β’ (πΎ β π β (π§ β (LIndSβπΎ) β (π§ β (BaseβπΎ) β§ ( I βΎ π§) LIndF πΎ))) |
17 | 8, 16 | syl 17 | . . 3 β’ (π β (π§ β (LIndSβπΎ) β (π§ β (BaseβπΎ) β§ ( I βΎ π§) LIndF πΎ))) |
18 | eqid 2732 | . . . . 5 β’ (BaseβπΏ) = (BaseβπΏ) | |
19 | 18 | islinds 21355 | . . . 4 β’ (πΏ β π β (π§ β (LIndSβπΏ) β (π§ β (BaseβπΏ) β§ ( I βΎ π§) LIndF πΏ))) |
20 | 9, 19 | syl 17 | . . 3 β’ (π β (π§ β (LIndSβπΏ) β (π§ β (BaseβπΏ) β§ ( I βΎ π§) LIndF πΏ))) |
21 | 14, 17, 20 | 3bitr4d 310 | . 2 β’ (π β (π§ β (LIndSβπΎ) β π§ β (LIndSβπΏ))) |
22 | 21 | eqrdv 2730 | 1 β’ (π β (LIndSβπΎ) = (LIndSβπΏ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3947 class class class wbr 5147 I cid 5572 βΎ cres 5677 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 LIndF clindf 21350 LIndSclinds 21351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-lss 20535 df-lsp 20575 df-lindf 21352 df-linds 21353 |
This theorem is referenced by: fedgmullem2 32703 |
Copyright terms: Public domain | W3C validator |