Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindspropd Structured version   Visualization version   GIF version

Theorem lindspropd 32487
Description: Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.)
Hypotheses
Ref Expression
lindfpropd.1 (πœ‘ β†’ (Baseβ€˜πΎ) = (Baseβ€˜πΏ))
lindfpropd.2 (πœ‘ β†’ (Baseβ€˜(Scalarβ€˜πΎ)) = (Baseβ€˜(Scalarβ€˜πΏ)))
lindfpropd.3 (πœ‘ β†’ (0gβ€˜(Scalarβ€˜πΎ)) = (0gβ€˜(Scalarβ€˜πΏ)))
lindfpropd.4 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))
lindfpropd.5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜πΎ)) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) ∈ (Baseβ€˜πΎ))
lindfpropd.6 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜πΎ)) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) = (π‘₯( ·𝑠 β€˜πΏ)𝑦))
lindfpropd.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
lindfpropd.l (πœ‘ β†’ 𝐿 ∈ π‘Š)
Assertion
Ref Expression
lindspropd (πœ‘ β†’ (LIndSβ€˜πΎ) = (LIndSβ€˜πΏ))
Distinct variable groups:   π‘₯,𝐾,𝑦   π‘₯,𝐿,𝑦   πœ‘,π‘₯,𝑦
Allowed substitution hints:   𝑉(π‘₯,𝑦)   π‘Š(π‘₯,𝑦)

Proof of Theorem lindspropd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lindfpropd.1 . . . . 5 (πœ‘ β†’ (Baseβ€˜πΎ) = (Baseβ€˜πΏ))
21sseq2d 4013 . . . 4 (πœ‘ β†’ (𝑧 βŠ† (Baseβ€˜πΎ) ↔ 𝑧 βŠ† (Baseβ€˜πΏ)))
3 lindfpropd.2 . . . . 5 (πœ‘ β†’ (Baseβ€˜(Scalarβ€˜πΎ)) = (Baseβ€˜(Scalarβ€˜πΏ)))
4 lindfpropd.3 . . . . 5 (πœ‘ β†’ (0gβ€˜(Scalarβ€˜πΎ)) = (0gβ€˜(Scalarβ€˜πΏ)))
5 lindfpropd.4 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))
6 lindfpropd.5 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜πΎ)) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) ∈ (Baseβ€˜πΎ))
7 lindfpropd.6 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜πΎ)) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) = (π‘₯( ·𝑠 β€˜πΏ)𝑦))
8 lindfpropd.k . . . . 5 (πœ‘ β†’ 𝐾 ∈ 𝑉)
9 lindfpropd.l . . . . 5 (πœ‘ β†’ 𝐿 ∈ π‘Š)
10 vex 3478 . . . . . . 7 𝑧 ∈ V
1110a1i 11 . . . . . 6 (πœ‘ β†’ 𝑧 ∈ V)
1211resiexd 7214 . . . . 5 (πœ‘ β†’ ( I β†Ύ 𝑧) ∈ V)
131, 3, 4, 5, 6, 7, 8, 9, 12lindfpropd 32486 . . . 4 (πœ‘ β†’ (( I β†Ύ 𝑧) LIndF 𝐾 ↔ ( I β†Ύ 𝑧) LIndF 𝐿))
142, 13anbi12d 631 . . 3 (πœ‘ β†’ ((𝑧 βŠ† (Baseβ€˜πΎ) ∧ ( I β†Ύ 𝑧) LIndF 𝐾) ↔ (𝑧 βŠ† (Baseβ€˜πΏ) ∧ ( I β†Ύ 𝑧) LIndF 𝐿)))
15 eqid 2732 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1615islinds 21355 . . . 4 (𝐾 ∈ 𝑉 β†’ (𝑧 ∈ (LIndSβ€˜πΎ) ↔ (𝑧 βŠ† (Baseβ€˜πΎ) ∧ ( I β†Ύ 𝑧) LIndF 𝐾)))
178, 16syl 17 . . 3 (πœ‘ β†’ (𝑧 ∈ (LIndSβ€˜πΎ) ↔ (𝑧 βŠ† (Baseβ€˜πΎ) ∧ ( I β†Ύ 𝑧) LIndF 𝐾)))
18 eqid 2732 . . . . 5 (Baseβ€˜πΏ) = (Baseβ€˜πΏ)
1918islinds 21355 . . . 4 (𝐿 ∈ π‘Š β†’ (𝑧 ∈ (LIndSβ€˜πΏ) ↔ (𝑧 βŠ† (Baseβ€˜πΏ) ∧ ( I β†Ύ 𝑧) LIndF 𝐿)))
209, 19syl 17 . . 3 (πœ‘ β†’ (𝑧 ∈ (LIndSβ€˜πΏ) ↔ (𝑧 βŠ† (Baseβ€˜πΏ) ∧ ( I β†Ύ 𝑧) LIndF 𝐿)))
2114, 17, 203bitr4d 310 . 2 (πœ‘ β†’ (𝑧 ∈ (LIndSβ€˜πΎ) ↔ 𝑧 ∈ (LIndSβ€˜πΏ)))
2221eqrdv 2730 1 (πœ‘ β†’ (LIndSβ€˜πΎ) = (LIndSβ€˜πΏ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βŠ† wss 3947   class class class wbr 5147   I cid 5572   β†Ύ cres 5677  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381   LIndF clindf 21350  LIndSclinds 21351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-lss 20535  df-lsp 20575  df-lindf 21352  df-linds 21353
This theorem is referenced by:  fedgmullem2  32703
  Copyright terms: Public domain W3C validator