MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnum3 Structured version   Visualization version   GIF version

Theorem isnum3 9844
Description: A set is numerable iff it is equinumerous with its cardinal. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnum3 (𝐴 ∈ dom card ↔ (card‘𝐴) ≈ 𝐴)

Proof of Theorem isnum3
StepHypRef Expression
1 cardid2 9843 . 2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
2 cardon 9834 . . 3 (card‘𝐴) ∈ On
3 isnumi 9836 . . 3 (((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴) → 𝐴 ∈ dom card)
42, 3mpan 690 . 2 ((card‘𝐴) ≈ 𝐴𝐴 ∈ dom card)
51, 4impbii 209 1 (𝐴 ∈ dom card ↔ (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111   class class class wbr 5091  dom cdm 5616  Oncon0 6306  cfv 6481  cen 8866  cardccrd 9825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-en 8870  df-card 9829
This theorem is referenced by:  ttukey2g  10404
  Copyright terms: Public domain W3C validator