MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnum3 Structured version   Visualization version   GIF version

Theorem isnum3 9995
Description: A set is numerable iff it is equinumerous with its cardinal. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnum3 (𝐴 ∈ dom card ↔ (card‘𝐴) ≈ 𝐴)

Proof of Theorem isnum3
StepHypRef Expression
1 cardid2 9994 . 2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
2 cardon 9985 . . 3 (card‘𝐴) ∈ On
3 isnumi 9987 . . 3 (((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴) → 𝐴 ∈ dom card)
42, 3mpan 690 . 2 ((card‘𝐴) ≈ 𝐴𝐴 ∈ dom card)
51, 4impbii 209 1 (𝐴 ∈ dom card ↔ (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107   class class class wbr 5142  dom cdm 5684  Oncon0 6383  cfv 6560  cen 8983  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-en 8987  df-card 9980
This theorem is referenced by:  ttukey2g  10557
  Copyright terms: Public domain W3C validator