![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnum3 | Structured version Visualization version GIF version |
Description: A set is numerable iff it is equinumerous with its cardinal. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
isnum3 | ⊢ (𝐴 ∈ dom card ↔ (card‘𝐴) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 10022 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
2 | cardon 10013 | . . 3 ⊢ (card‘𝐴) ∈ On | |
3 | isnumi 10015 | . . 3 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴) → 𝐴 ∈ dom card) | |
4 | 2, 3 | mpan 689 | . 2 ⊢ ((card‘𝐴) ≈ 𝐴 → 𝐴 ∈ dom card) |
5 | 1, 4 | impbii 209 | 1 ⊢ (𝐴 ∈ dom card ↔ (card‘𝐴) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 dom cdm 5700 Oncon0 6395 ‘cfv 6573 ≈ cen 9000 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-en 9004 df-card 10008 |
This theorem is referenced by: ttukey2g 10585 |
Copyright terms: Public domain | W3C validator |