![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnum3 | Structured version Visualization version GIF version |
Description: A set is numerable iff it is equinumerous with its cardinal. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
isnum3 | β’ (π΄ β dom card β (cardβπ΄) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 9947 | . 2 β’ (π΄ β dom card β (cardβπ΄) β π΄) | |
2 | cardon 9938 | . . 3 β’ (cardβπ΄) β On | |
3 | isnumi 9940 | . . 3 β’ (((cardβπ΄) β On β§ (cardβπ΄) β π΄) β π΄ β dom card) | |
4 | 2, 3 | mpan 687 | . 2 β’ ((cardβπ΄) β π΄ β π΄ β dom card) |
5 | 1, 4 | impbii 208 | 1 β’ (π΄ β dom card β (cardβπ΄) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β wcel 2098 class class class wbr 5141 dom cdm 5669 Oncon0 6357 βcfv 6536 β cen 8935 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-en 8939 df-card 9933 |
This theorem is referenced by: ttukey2g 10510 |
Copyright terms: Public domain | W3C validator |