MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnumi Structured version   Visualization version   GIF version

Theorem isnumi 9984
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)

Proof of Theorem isnumi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5151 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
21rspcev 3622 . 2 ((𝐴 ∈ On ∧ 𝐴𝐵) → ∃𝑥 ∈ On 𝑥𝐵)
3 isnum2 9983 . 2 (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐵)
42, 3sylibr 234 1 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wrex 3068   class class class wbr 5148  dom cdm 5689  Oncon0 6386  cen 8981  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-fun 6565  df-fn 6566  df-f 6567  df-en 8985  df-card 9977
This theorem is referenced by:  finnum  9986  onenon  9987  tskwe  9988  xpnum  9989  isnum3  9992  dfac8alem  10067  djunum  10234  fin67  10433  isfin7-2  10434  gch2  10713  gchacg  10718  znnen  16245  qnnen  16246  met1stc  24550  re2ndc  24837  uniiccdif  25627  dyadmbl  25649  opnmblALT  25652  mbfimaopnlem  25704  aannenlem3  26387  poimirlem32  37639
  Copyright terms: Public domain W3C validator