Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnumi | Structured version Visualization version GIF version |
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
isnumi | ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5084 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
2 | 1 | rspcev 3566 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∃𝑥 ∈ On 𝑥 ≈ 𝐵) |
3 | isnum2 9747 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐵) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ∃wrex 3071 class class class wbr 5081 dom cdm 5600 Oncon0 6281 ≈ cen 8761 cardccrd 9737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-fun 6460 df-fn 6461 df-f 6462 df-en 8765 df-card 9741 |
This theorem is referenced by: finnum 9750 onenon 9751 tskwe 9752 xpnum 9753 isnum3 9756 dfac8alem 9831 djunum 9997 fin67 10197 isfin7-2 10198 gch2 10477 gchacg 10482 znnen 15966 qnnen 15967 met1stc 23722 re2ndc 24009 uniiccdif 24787 dyadmbl 24809 opnmblALT 24812 mbfimaopnlem 24864 aannenlem3 25535 poimirlem32 35853 |
Copyright terms: Public domain | W3C validator |