| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnumi | Structured version Visualization version GIF version | ||
| Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| isnumi | ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5089 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
| 2 | 1 | rspcev 3572 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∃𝑥 ∈ On 𝑥 ≈ 𝐵) |
| 3 | isnum2 9833 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐵) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5086 dom cdm 5611 Oncon0 6301 ≈ cen 8861 cardccrd 9823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-fun 6478 df-fn 6479 df-f 6480 df-en 8865 df-card 9827 |
| This theorem is referenced by: finnum 9836 onenon 9837 tskwe 9838 xpnum 9839 isnum3 9842 dfac8alem 9915 djunum 10082 fin67 10281 isfin7-2 10282 gch2 10561 gchacg 10566 znnen 16116 qnnen 16117 met1stc 24431 re2ndc 24711 uniiccdif 25501 dyadmbl 25523 opnmblALT 25526 mbfimaopnlem 25578 aannenlem3 26260 poimirlem32 37692 |
| Copyright terms: Public domain | W3C validator |