MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnumi Structured version   Visualization version   GIF version

Theorem isnumi 9748
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)

Proof of Theorem isnumi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5084 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
21rspcev 3566 . 2 ((𝐴 ∈ On ∧ 𝐴𝐵) → ∃𝑥 ∈ On 𝑥𝐵)
3 isnum2 9747 . 2 (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐵)
42, 3sylibr 233 1 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  wrex 3071   class class class wbr 5081  dom cdm 5600  Oncon0 6281  cen 8761  cardccrd 9737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-fun 6460  df-fn 6461  df-f 6462  df-en 8765  df-card 9741
This theorem is referenced by:  finnum  9750  onenon  9751  tskwe  9752  xpnum  9753  isnum3  9756  dfac8alem  9831  djunum  9997  fin67  10197  isfin7-2  10198  gch2  10477  gchacg  10482  znnen  15966  qnnen  15967  met1stc  23722  re2ndc  24009  uniiccdif  24787  dyadmbl  24809  opnmblALT  24812  mbfimaopnlem  24864  aannenlem3  25535  poimirlem32  35853
  Copyright terms: Public domain W3C validator