MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnumi Structured version   Visualization version   GIF version

Theorem isnumi 9970
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)

Proof of Theorem isnumi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5151 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
21rspcev 3609 . 2 ((𝐴 ∈ On ∧ 𝐴𝐵) → ∃𝑥 ∈ On 𝑥𝐵)
3 isnum2 9969 . 2 (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐵)
42, 3sylibr 233 1 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wrex 3067   class class class wbr 5148  dom cdm 5678  Oncon0 6369  cen 8961  cardccrd 9959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-fun 6550  df-fn 6551  df-f 6552  df-en 8965  df-card 9963
This theorem is referenced by:  finnum  9972  onenon  9973  tskwe  9974  xpnum  9975  isnum3  9978  dfac8alem  10053  djunum  10219  fin67  10419  isfin7-2  10420  gch2  10699  gchacg  10704  znnen  16189  qnnen  16190  met1stc  24443  re2ndc  24730  uniiccdif  25520  dyadmbl  25542  opnmblALT  25545  mbfimaopnlem  25597  aannenlem3  26278  poimirlem32  37125
  Copyright terms: Public domain W3C validator