MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnumi Structured version   Visualization version   GIF version

Theorem isnumi 9941
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)

Proof of Theorem isnumi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5152 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
21rspcev 3613 . 2 ((𝐴 ∈ On ∧ 𝐴𝐵) → ∃𝑥 ∈ On 𝑥𝐵)
3 isnum2 9940 . 2 (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐵)
42, 3sylibr 233 1 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wrex 3071   class class class wbr 5149  dom cdm 5677  Oncon0 6365  cen 8936  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-fun 6546  df-fn 6547  df-f 6548  df-en 8940  df-card 9934
This theorem is referenced by:  finnum  9943  onenon  9944  tskwe  9945  xpnum  9946  isnum3  9949  dfac8alem  10024  djunum  10190  fin67  10390  isfin7-2  10391  gch2  10670  gchacg  10675  znnen  16155  qnnen  16156  met1stc  24030  re2ndc  24317  uniiccdif  25095  dyadmbl  25117  opnmblALT  25120  mbfimaopnlem  25172  aannenlem3  25843  poimirlem32  36520
  Copyright terms: Public domain W3C validator