| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardid2 | Structured version Visualization version GIF version | ||
| Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardid2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardval3 9845 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 2 | ssrab2 4027 | . . . 4 ⊢ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On | |
| 3 | fvex 6835 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
| 4 | 1, 3 | eqeltrrdi 2840 | . . . . 5 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
| 5 | intex 5280 | . . . . 5 ⊢ ({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅ ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) |
| 7 | onint 7723 | . . . 4 ⊢ (({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 9 | 1, 8 | eqeltrd 2831 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 10 | breq1 5092 | . . . 4 ⊢ (𝑦 = (card‘𝐴) → (𝑦 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
| 11 | 10 | elrab 3642 | . . 3 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴)) |
| 12 | 11 | simprbi 496 | . 2 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → (card‘𝐴) ≈ 𝐴) |
| 13 | 9, 12 | syl 17 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 ∩ cint 4895 class class class wbr 5089 dom cdm 5614 Oncon0 6306 ‘cfv 6481 ≈ cen 8866 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-en 8870 df-card 9832 |
| This theorem is referenced by: isnum3 9847 oncardid 9849 cardidm 9852 ficardom 9854 ficardid 9855 cardnn 9856 cardnueq0 9857 carden2a 9859 carden2b 9860 carddomi2 9863 sdomsdomcardi 9864 cardsdomelir 9866 cardsdomel 9867 infxpidm2 9908 dfac8b 9922 numdom 9929 alephnbtwn2 9963 alephsucdom 9970 infenaleph 9982 dfac12r 10038 cardadju 10086 pwsdompw 10094 cff1 10149 cfflb 10150 cflim2 10154 cfss 10156 cfslb 10157 domtriomlem 10333 cardid 10438 cardidg 10439 carden 10442 sdomsdomcard 10451 hargch 10564 gch2 10566 hashkf 14239 |
| Copyright terms: Public domain | W3C validator |