MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardid2 Structured version   Visualization version   GIF version

Theorem cardid2 10018
Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardid2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)

Proof of Theorem cardid2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardval3 10017 . . 3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
2 ssrab2 4097 . . . 4 {𝑦 ∈ On ∣ 𝑦𝐴} ⊆ On
3 fvex 6932 . . . . . 6 (card‘𝐴) ∈ V
41, 3eqeltrrdi 2847 . . . . 5 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
5 intex 5365 . . . . 5 ({𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
64, 5sylibr 234 . . . 4 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅)
7 onint 7822 . . . 4 (({𝑦 ∈ On ∣ 𝑦𝐴} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅) → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
82, 6, 7sylancr 586 . . 3 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
91, 8eqeltrd 2838 . 2 (𝐴 ∈ dom card → (card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
10 breq1 5172 . . . 4 (𝑦 = (card‘𝐴) → (𝑦𝐴 ↔ (card‘𝐴) ≈ 𝐴))
1110elrab 3703 . . 3 ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴} ↔ ((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴))
1211simprbi 496 . 2 ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴} → (card‘𝐴) ≈ 𝐴)
139, 12syl 17 1 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2103  wne 2942  {crab 3438  Vcvv 3482  wss 3970  c0 4347   cint 4972   class class class wbr 5169  dom cdm 5699  Oncon0 6394  cfv 6572  cen 8996  cardccrd 10000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-ord 6397  df-on 6398  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-fv 6580  df-en 9000  df-card 10004
This theorem is referenced by:  isnum3  10019  oncardid  10021  cardidm  10024  ficardom  10026  ficardid  10027  cardnn  10028  cardnueq0  10029  carden2a  10031  carden2b  10032  carddomi2  10035  sdomsdomcardi  10036  cardsdomelir  10038  cardsdomel  10039  infxpidm2  10082  dfac8b  10096  numdom  10103  alephnbtwn2  10137  alephsucdom  10144  infenaleph  10156  dfac12r  10212  cardadju  10260  pwsdompw  10268  cff1  10323  cfflb  10324  cflim2  10328  cfss  10330  cfslb  10331  domtriomlem  10507  cardid  10612  cardidg  10613  carden  10616  sdomsdomcard  10625  hargch  10738  gch2  10740  hashkf  14377
  Copyright terms: Public domain W3C validator