| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardid2 | Structured version Visualization version GIF version | ||
| Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardid2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardval3 9881 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 2 | ssrab2 4039 | . . . 4 ⊢ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On | |
| 3 | fvex 6853 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
| 4 | 1, 3 | eqeltrrdi 2837 | . . . . 5 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
| 5 | intex 5294 | . . . . 5 ⊢ ({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅ ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) |
| 7 | onint 7746 | . . . 4 ⊢ (({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 9 | 1, 8 | eqeltrd 2828 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 10 | breq1 5105 | . . . 4 ⊢ (𝑦 = (card‘𝐴) → (𝑦 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
| 11 | 10 | elrab 3656 | . . 3 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴)) |
| 12 | 11 | simprbi 496 | . 2 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → (card‘𝐴) ≈ 𝐴) |
| 13 | 9, 12 | syl 17 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 ∩ cint 4906 class class class wbr 5102 dom cdm 5631 Oncon0 6320 ‘cfv 6499 ≈ cen 8892 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-en 8896 df-card 9868 |
| This theorem is referenced by: isnum3 9883 oncardid 9885 cardidm 9888 ficardom 9890 ficardid 9891 cardnn 9892 cardnueq0 9893 carden2a 9895 carden2b 9896 carddomi2 9899 sdomsdomcardi 9900 cardsdomelir 9902 cardsdomel 9903 infxpidm2 9946 dfac8b 9960 numdom 9967 alephnbtwn2 10001 alephsucdom 10008 infenaleph 10020 dfac12r 10076 cardadju 10124 pwsdompw 10132 cff1 10187 cfflb 10188 cflim2 10192 cfss 10194 cfslb 10195 domtriomlem 10371 cardid 10476 cardidg 10477 carden 10480 sdomsdomcard 10489 hargch 10602 gch2 10604 hashkf 14273 |
| Copyright terms: Public domain | W3C validator |