| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardid2 | Structured version Visualization version GIF version | ||
| Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardid2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardval3 9974 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 2 | ssrab2 4060 | . . . 4 ⊢ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On | |
| 3 | fvex 6899 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
| 4 | 1, 3 | eqeltrrdi 2842 | . . . . 5 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
| 5 | intex 5324 | . . . . 5 ⊢ ({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅ ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) |
| 7 | onint 7792 | . . . 4 ⊢ (({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 9 | 1, 8 | eqeltrd 2833 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 10 | breq1 5126 | . . . 4 ⊢ (𝑦 = (card‘𝐴) → (𝑦 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
| 11 | 10 | elrab 3675 | . . 3 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴)) |
| 12 | 11 | simprbi 496 | . 2 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → (card‘𝐴) ≈ 𝐴) |
| 13 | 9, 12 | syl 17 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2931 {crab 3419 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 ∩ cint 4926 class class class wbr 5123 dom cdm 5665 Oncon0 6363 ‘cfv 6541 ≈ cen 8964 cardccrd 9957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-en 8968 df-card 9961 |
| This theorem is referenced by: isnum3 9976 oncardid 9978 cardidm 9981 ficardom 9983 ficardid 9984 cardnn 9985 cardnueq0 9986 carden2a 9988 carden2b 9989 carddomi2 9992 sdomsdomcardi 9993 cardsdomelir 9995 cardsdomel 9996 infxpidm2 10039 dfac8b 10053 numdom 10060 alephnbtwn2 10094 alephsucdom 10101 infenaleph 10113 dfac12r 10169 cardadju 10217 pwsdompw 10225 cff1 10280 cfflb 10281 cflim2 10285 cfss 10287 cfslb 10288 domtriomlem 10464 cardid 10569 cardidg 10570 carden 10573 sdomsdomcard 10582 hargch 10695 gch2 10697 hashkf 14353 |
| Copyright terms: Public domain | W3C validator |