| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardid2 | Structured version Visualization version GIF version | ||
| Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardid2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardval3 9911 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 2 | ssrab2 4045 | . . . 4 ⊢ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On | |
| 3 | fvex 6873 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
| 4 | 1, 3 | eqeltrrdi 2838 | . . . . 5 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
| 5 | intex 5301 | . . . . 5 ⊢ ({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅ ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) |
| 7 | onint 7768 | . . . 4 ⊢ (({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 9 | 1, 8 | eqeltrd 2829 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 10 | breq1 5112 | . . . 4 ⊢ (𝑦 = (card‘𝐴) → (𝑦 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
| 11 | 10 | elrab 3661 | . . 3 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴)) |
| 12 | 11 | simprbi 496 | . 2 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → (card‘𝐴) ≈ 𝐴) |
| 13 | 9, 12 | syl 17 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 ⊆ wss 3916 ∅c0 4298 ∩ cint 4912 class class class wbr 5109 dom cdm 5640 Oncon0 6334 ‘cfv 6513 ≈ cen 8917 cardccrd 9894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-en 8921 df-card 9898 |
| This theorem is referenced by: isnum3 9913 oncardid 9915 cardidm 9918 ficardom 9920 ficardid 9921 cardnn 9922 cardnueq0 9923 carden2a 9925 carden2b 9926 carddomi2 9929 sdomsdomcardi 9930 cardsdomelir 9932 cardsdomel 9933 infxpidm2 9976 dfac8b 9990 numdom 9997 alephnbtwn2 10031 alephsucdom 10038 infenaleph 10050 dfac12r 10106 cardadju 10154 pwsdompw 10162 cff1 10217 cfflb 10218 cflim2 10222 cfss 10224 cfslb 10225 domtriomlem 10401 cardid 10506 cardidg 10507 carden 10510 sdomsdomcard 10519 hargch 10632 gch2 10634 hashkf 14303 |
| Copyright terms: Public domain | W3C validator |