MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardid2 Structured version   Visualization version   GIF version

Theorem cardid2 9642
Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardid2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)

Proof of Theorem cardid2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardval3 9641 . . 3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
2 ssrab2 4009 . . . 4 {𝑦 ∈ On ∣ 𝑦𝐴} ⊆ On
3 fvex 6769 . . . . . 6 (card‘𝐴) ∈ V
41, 3eqeltrrdi 2848 . . . . 5 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
5 intex 5256 . . . . 5 ({𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
64, 5sylibr 233 . . . 4 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅)
7 onint 7617 . . . 4 (({𝑦 ∈ On ∣ 𝑦𝐴} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅) → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
82, 6, 7sylancr 586 . . 3 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
91, 8eqeltrd 2839 . 2 (𝐴 ∈ dom card → (card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
10 breq1 5073 . . . 4 (𝑦 = (card‘𝐴) → (𝑦𝐴 ↔ (card‘𝐴) ≈ 𝐴))
1110elrab 3617 . . 3 ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴} ↔ ((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴))
1211simprbi 496 . 2 ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴} → (card‘𝐴) ≈ 𝐴)
139, 12syl 17 1 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  c0 4253   cint 4876   class class class wbr 5070  dom cdm 5580  Oncon0 6251  cfv 6418  cen 8688  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-en 8692  df-card 9628
This theorem is referenced by:  isnum3  9643  oncardid  9645  cardidm  9648  ficardom  9650  ficardid  9651  cardnn  9652  cardnueq0  9653  carden2a  9655  carden2b  9656  carddomi2  9659  sdomsdomcardi  9660  cardsdomelir  9662  cardsdomel  9663  infxpidm2  9704  dfac8b  9718  numdom  9725  alephnbtwn2  9759  alephsucdom  9766  infenaleph  9778  dfac12r  9833  cardadju  9881  pwsdompw  9891  cff1  9945  cfflb  9946  cflim2  9950  cfss  9952  cfslb  9953  domtriomlem  10129  cardid  10234  cardidg  10235  carden  10238  sdomsdomcard  10247  hargch  10360  gch2  10362  hashkf  13974
  Copyright terms: Public domain W3C validator