MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardid2 Structured version   Visualization version   GIF version

Theorem cardid2 9849
Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardid2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)

Proof of Theorem cardid2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardval3 9848 . . 3 (𝐴 ∈ dom card → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
2 ssrab2 4031 . . . 4 {𝑦 ∈ On ∣ 𝑦𝐴} ⊆ On
3 fvex 6835 . . . . . 6 (card‘𝐴) ∈ V
41, 3eqeltrrdi 2837 . . . . 5 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
5 intex 5283 . . . . 5 ({𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅ ↔ {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
64, 5sylibr 234 . . . 4 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅)
7 onint 7726 . . . 4 (({𝑦 ∈ On ∣ 𝑦𝐴} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦𝐴} ≠ ∅) → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
82, 6, 7sylancr 587 . . 3 (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦𝐴} ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
91, 8eqeltrd 2828 . 2 (𝐴 ∈ dom card → (card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴})
10 breq1 5095 . . . 4 (𝑦 = (card‘𝐴) → (𝑦𝐴 ↔ (card‘𝐴) ≈ 𝐴))
1110elrab 3648 . . 3 ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴} ↔ ((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴))
1211simprbi 496 . 2 ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦𝐴} → (card‘𝐴) ≈ 𝐴)
139, 12syl 17 1 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  wss 3903  c0 4284   cint 4896   class class class wbr 5092  dom cdm 5619  Oncon0 6307  cfv 6482  cen 8869  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-en 8873  df-card 9835
This theorem is referenced by:  isnum3  9850  oncardid  9852  cardidm  9855  ficardom  9857  ficardid  9858  cardnn  9859  cardnueq0  9860  carden2a  9862  carden2b  9863  carddomi2  9866  sdomsdomcardi  9867  cardsdomelir  9869  cardsdomel  9870  infxpidm2  9911  dfac8b  9925  numdom  9932  alephnbtwn2  9966  alephsucdom  9973  infenaleph  9985  dfac12r  10041  cardadju  10089  pwsdompw  10097  cff1  10152  cfflb  10153  cflim2  10157  cfss  10159  cfslb  10160  domtriomlem  10336  cardid  10441  cardidg  10442  carden  10445  sdomsdomcard  10454  hargch  10567  gch2  10569  hashkf  14239
  Copyright terms: Public domain W3C validator