| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhsst | Structured version Visualization version GIF version | ||
| Description: A member of Sℋ is a subspace. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhsst.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| hhsst.2 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| Ref | Expression |
|---|---|
| hhsst | ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.2 | . . . 4 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 2 | 1 | hhssnvt 31227 | . . 3 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) |
| 3 | resss 5956 | . . . 4 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ | |
| 4 | resss 5956 | . . . 4 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ | |
| 5 | resss 5956 | . . . 4 ⊢ (normℎ ↾ 𝐻) ⊆ normℎ | |
| 6 | 3, 4, 5 | 3pm3.2i 1340 | . . 3 ⊢ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ) |
| 7 | 2, 6 | jctir 520 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ))) |
| 8 | hhsst.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 9 | 8 | hhnv 31127 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
| 10 | 8 | hhva 31128 | . . . 4 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| 11 | 1 | hhssva 31219 | . . . 4 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) = ( +𝑣 ‘𝑊) |
| 12 | 8 | hhsm 31131 | . . . 4 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| 13 | 1 | hhsssm 31220 | . . . 4 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) |
| 14 | 8 | hhnm 31133 | . . . 4 ⊢ normℎ = (normCV‘𝑈) |
| 15 | 1 | hhssnm 31221 | . . . 4 ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) |
| 16 | eqid 2729 | . . . 4 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
| 17 | 10, 11, 12, 13, 14, 15, 16 | isssp 30686 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ (SubSp‘𝑈) ↔ (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ)))) |
| 18 | 9, 17 | ax-mp 5 | . 2 ⊢ (𝑊 ∈ (SubSp‘𝑈) ↔ (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ))) |
| 19 | 7, 18 | sylibr 234 | 1 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 〈cop 4585 × cxp 5621 ↾ cres 5625 ‘cfv 6486 ℂcc 11026 NrmCVeccnv 30546 SubSpcss 30683 +ℎ cva 30882 ·ℎ csm 30883 normℎcno 30885 Sℋ csh 30890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 ax-hilex 30961 ax-hfvadd 30962 ax-hvcom 30963 ax-hvass 30964 ax-hv0cl 30965 ax-hvaddid 30966 ax-hfvmul 30967 ax-hvmulid 30968 ax-hvmulass 30969 ax-hvdistr1 30970 ax-hvdistr2 30971 ax-hvmul0 30972 ax-hfi 31041 ax-his1 31044 ax-his2 31045 ax-his3 31046 ax-his4 31047 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-bases 22849 df-lm 23132 df-haus 23218 df-grpo 30455 df-gid 30456 df-ginv 30457 df-gdiv 30458 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-vs 30561 df-nmcv 30562 df-ims 30563 df-ssp 30684 df-hnorm 30930 df-hba 30931 df-hvsub 30933 df-hlim 30934 df-sh 31169 df-ch 31183 df-ch0 31215 |
| This theorem is referenced by: hhsssh 31231 hhssba 31233 hhssvs 31234 pjhthlem2 31354 |
| Copyright terms: Public domain | W3C validator |