| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhsst | Structured version Visualization version GIF version | ||
| Description: A member of Sℋ is a subspace. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhsst.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| hhsst.2 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| Ref | Expression |
|---|---|
| hhsst | ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.2 | . . . 4 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 2 | 1 | hhssnvt 31240 | . . 3 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) |
| 3 | resss 5950 | . . . 4 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ | |
| 4 | resss 5950 | . . . 4 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ | |
| 5 | resss 5950 | . . . 4 ⊢ (normℎ ↾ 𝐻) ⊆ normℎ | |
| 6 | 3, 4, 5 | 3pm3.2i 1340 | . . 3 ⊢ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ) |
| 7 | 2, 6 | jctir 520 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ))) |
| 8 | hhsst.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 9 | 8 | hhnv 31140 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
| 10 | 8 | hhva 31141 | . . . 4 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| 11 | 1 | hhssva 31232 | . . . 4 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) = ( +𝑣 ‘𝑊) |
| 12 | 8 | hhsm 31144 | . . . 4 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| 13 | 1 | hhsssm 31233 | . . . 4 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) |
| 14 | 8 | hhnm 31146 | . . . 4 ⊢ normℎ = (normCV‘𝑈) |
| 15 | 1 | hhssnm 31234 | . . . 4 ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) |
| 16 | eqid 2731 | . . . 4 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
| 17 | 10, 11, 12, 13, 14, 15, 16 | isssp 30699 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ (SubSp‘𝑈) ↔ (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ)))) |
| 18 | 9, 17 | ax-mp 5 | . 2 ⊢ (𝑊 ∈ (SubSp‘𝑈) ↔ (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ))) |
| 19 | 7, 18 | sylibr 234 | 1 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 〈cop 4582 × cxp 5614 ↾ cres 5618 ‘cfv 6481 ℂcc 11001 NrmCVeccnv 30559 SubSpcss 30696 +ℎ cva 30895 ·ℎ csm 30896 normℎcno 30898 Sℋ csh 30903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 ax-hilex 30974 ax-hfvadd 30975 ax-hvcom 30976 ax-hvass 30977 ax-hv0cl 30978 ax-hvaddid 30979 ax-hfvmul 30980 ax-hvmulid 30981 ax-hvmulass 30982 ax-hvdistr1 30983 ax-hvdistr2 30984 ax-hvmul0 30985 ax-hfi 31054 ax-his1 31057 ax-his2 31058 ax-his3 31059 ax-his4 31060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-icc 13249 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-top 22807 df-topon 22824 df-bases 22859 df-lm 23142 df-haus 23228 df-grpo 30468 df-gid 30469 df-ginv 30470 df-gdiv 30471 df-ablo 30520 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-vs 30574 df-nmcv 30575 df-ims 30576 df-ssp 30697 df-hnorm 30943 df-hba 30944 df-hvsub 30946 df-hlim 30947 df-sh 31182 df-ch 31196 df-ch0 31228 |
| This theorem is referenced by: hhsssh 31244 hhssba 31246 hhssvs 31247 pjhthlem2 31367 |
| Copyright terms: Public domain | W3C validator |