HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsst Structured version   Visualization version   GIF version

Theorem hhsst 31285
Description: A member of S is a subspace. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsst (𝐻S𝑊 ∈ (SubSp‘𝑈))

Proof of Theorem hhsst
StepHypRef Expression
1 hhsst.2 . . . 4 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
21hhssnvt 31284 . . 3 (𝐻S𝑊 ∈ NrmCVec)
3 resss 6019 . . . 4 ( + ↾ (𝐻 × 𝐻)) ⊆ +
4 resss 6019 . . . 4 ( · ↾ (ℂ × 𝐻)) ⊆ ·
5 resss 6019 . . . 4 (norm𝐻) ⊆ norm
63, 4, 53pm3.2i 1340 . . 3 (( + ↾ (𝐻 × 𝐻)) ⊆ + ∧ ( · ↾ (ℂ × 𝐻)) ⊆ · ∧ (norm𝐻) ⊆ norm)
72, 6jctir 520 . 2 (𝐻S → (𝑊 ∈ NrmCVec ∧ (( + ↾ (𝐻 × 𝐻)) ⊆ + ∧ ( · ↾ (ℂ × 𝐻)) ⊆ · ∧ (norm𝐻) ⊆ norm)))
8 hhsst.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
98hhnv 31184 . . 3 𝑈 ∈ NrmCVec
108hhva 31185 . . . 4 + = ( +𝑣𝑈)
111hhssva 31276 . . . 4 ( + ↾ (𝐻 × 𝐻)) = ( +𝑣𝑊)
128hhsm 31188 . . . 4 · = ( ·𝑠OLD𝑈)
131hhsssm 31277 . . . 4 ( · ↾ (ℂ × 𝐻)) = ( ·𝑠OLD𝑊)
148hhnm 31190 . . . 4 norm = (normCV𝑈)
151hhssnm 31278 . . . 4 (norm𝐻) = (normCV𝑊)
16 eqid 2737 . . . 4 (SubSp‘𝑈) = (SubSp‘𝑈)
1710, 11, 12, 13, 14, 15, 16isssp 30743 . . 3 (𝑈 ∈ NrmCVec → (𝑊 ∈ (SubSp‘𝑈) ↔ (𝑊 ∈ NrmCVec ∧ (( + ↾ (𝐻 × 𝐻)) ⊆ + ∧ ( · ↾ (ℂ × 𝐻)) ⊆ · ∧ (norm𝐻) ⊆ norm))))
189, 17ax-mp 5 . 2 (𝑊 ∈ (SubSp‘𝑈) ↔ (𝑊 ∈ NrmCVec ∧ (( + ↾ (𝐻 × 𝐻)) ⊆ + ∧ ( · ↾ (ℂ × 𝐻)) ⊆ · ∧ (norm𝐻) ⊆ norm)))
197, 18sylibr 234 1 (𝐻S𝑊 ∈ (SubSp‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951  cop 4632   × cxp 5683  cres 5687  cfv 6561  cc 11153  NrmCVeccnv 30603  SubSpcss 30740   + cva 30939   · csm 30940  normcno 30942   S csh 30947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-lm 23237  df-haus 23323  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-ssp 30741  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-sh 31226  df-ch 31240  df-ch0 31272
This theorem is referenced by:  hhsssh  31288  hhssba  31290  hhssvs  31291  pjhthlem2  31411
  Copyright terms: Public domain W3C validator