MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspba Structured version   Visualization version   GIF version

Theorem sspba 29967
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspba.x 𝑋 = (BaseSetβ€˜π‘ˆ)
sspba.y π‘Œ = (BaseSetβ€˜π‘Š)
sspba.h 𝐻 = (SubSpβ€˜π‘ˆ)
Assertion
Ref Expression
sspba ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ π‘Œ βŠ† 𝑋)

Proof of Theorem sspba
StepHypRef Expression
1 eqid 2732 . . . . . 6 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
2 eqid 2732 . . . . . 6 ( +𝑣 β€˜π‘Š) = ( +𝑣 β€˜π‘Š)
3 eqid 2732 . . . . . 6 ( ·𝑠OLD β€˜π‘ˆ) = ( ·𝑠OLD β€˜π‘ˆ)
4 eqid 2732 . . . . . 6 ( ·𝑠OLD β€˜π‘Š) = ( ·𝑠OLD β€˜π‘Š)
5 eqid 2732 . . . . . 6 (normCVβ€˜π‘ˆ) = (normCVβ€˜π‘ˆ)
6 eqid 2732 . . . . . 6 (normCVβ€˜π‘Š) = (normCVβ€˜π‘Š)
7 sspba.h . . . . . 6 𝐻 = (SubSpβ€˜π‘ˆ)
81, 2, 3, 4, 5, 6, 7isssp 29964 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ (π‘Š ∈ 𝐻 ↔ (π‘Š ∈ NrmCVec ∧ (( +𝑣 β€˜π‘Š) βŠ† ( +𝑣 β€˜π‘ˆ) ∧ ( ·𝑠OLD β€˜π‘Š) βŠ† ( ·𝑠OLD β€˜π‘ˆ) ∧ (normCVβ€˜π‘Š) βŠ† (normCVβ€˜π‘ˆ)))))
98simplbda 500 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ (( +𝑣 β€˜π‘Š) βŠ† ( +𝑣 β€˜π‘ˆ) ∧ ( ·𝑠OLD β€˜π‘Š) βŠ† ( ·𝑠OLD β€˜π‘ˆ) ∧ (normCVβ€˜π‘Š) βŠ† (normCVβ€˜π‘ˆ)))
109simp1d 1142 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ ( +𝑣 β€˜π‘Š) βŠ† ( +𝑣 β€˜π‘ˆ))
11 rnss 5936 . . 3 (( +𝑣 β€˜π‘Š) βŠ† ( +𝑣 β€˜π‘ˆ) β†’ ran ( +𝑣 β€˜π‘Š) βŠ† ran ( +𝑣 β€˜π‘ˆ))
1210, 11syl 17 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ ran ( +𝑣 β€˜π‘Š) βŠ† ran ( +𝑣 β€˜π‘ˆ))
13 sspba.y . . 3 π‘Œ = (BaseSetβ€˜π‘Š)
1413, 2bafval 29844 . 2 π‘Œ = ran ( +𝑣 β€˜π‘Š)
15 sspba.x . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
1615, 1bafval 29844 . 2 𝑋 = ran ( +𝑣 β€˜π‘ˆ)
1712, 14, 163sstr4g 4026 1 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ 𝐻) β†’ π‘Œ βŠ† 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947  ran crn 5676  β€˜cfv 6540  NrmCVeccnv 29824   +𝑣 cpv 29825  BaseSetcba 29826   ·𝑠OLD cns 29827  normCVcnmcv 29830  SubSpcss 29961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-oprab 7409  df-1st 7971  df-2nd 7972  df-vc 29799  df-nv 29832  df-va 29835  df-ba 29836  df-sm 29837  df-nmcv 29840  df-ssp 29962
This theorem is referenced by:  sspg  29968  ssps  29970  sspmlem  29972  sspmval  29973  sspz  29975  sspn  29976  sspimsval  29978  minvecolem1  30114  minvecolem2  30115  minvecolem3  30116  minvecolem4b  30118  minvecolem4  30120  minvecolem5  30121  minvecolem6  30122  minvecolem7  30123
  Copyright terms: Public domain W3C validator