![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspba | Structured version Visualization version GIF version |
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspba.x | β’ π = (BaseSetβπ) |
sspba.y | β’ π = (BaseSetβπ) |
sspba.h | β’ π» = (SubSpβπ) |
Ref | Expression |
---|---|
sspba | β’ ((π β NrmCVec β§ π β π») β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . . 6 β’ ( +π£ βπ) = ( +π£ βπ) | |
2 | eqid 2733 | . . . . . 6 β’ ( +π£ βπ) = ( +π£ βπ) | |
3 | eqid 2733 | . . . . . 6 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
4 | eqid 2733 | . . . . . 6 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
5 | eqid 2733 | . . . . . 6 β’ (normCVβπ) = (normCVβπ) | |
6 | eqid 2733 | . . . . . 6 β’ (normCVβπ) = (normCVβπ) | |
7 | sspba.h | . . . . . 6 β’ π» = (SubSpβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isssp 29977 | . . . . 5 β’ (π β NrmCVec β (π β π» β (π β NrmCVec β§ (( +π£ βπ) β ( +π£ βπ) β§ ( Β·π OLD βπ) β ( Β·π OLD βπ) β§ (normCVβπ) β (normCVβπ))))) |
9 | 8 | simplbda 501 | . . . 4 β’ ((π β NrmCVec β§ π β π») β (( +π£ βπ) β ( +π£ βπ) β§ ( Β·π OLD βπ) β ( Β·π OLD βπ) β§ (normCVβπ) β (normCVβπ))) |
10 | 9 | simp1d 1143 | . . 3 β’ ((π β NrmCVec β§ π β π») β ( +π£ βπ) β ( +π£ βπ)) |
11 | rnss 5939 | . . 3 β’ (( +π£ βπ) β ( +π£ βπ) β ran ( +π£ βπ) β ran ( +π£ βπ)) | |
12 | 10, 11 | syl 17 | . 2 β’ ((π β NrmCVec β§ π β π») β ran ( +π£ βπ) β ran ( +π£ βπ)) |
13 | sspba.y | . . 3 β’ π = (BaseSetβπ) | |
14 | 13, 2 | bafval 29857 | . 2 β’ π = ran ( +π£ βπ) |
15 | sspba.x | . . 3 β’ π = (BaseSetβπ) | |
16 | 15, 1 | bafval 29857 | . 2 β’ π = ran ( +π£ βπ) |
17 | 12, 14, 16 | 3sstr4g 4028 | 1 β’ ((π β NrmCVec β§ π β π») β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wss 3949 ran crn 5678 βcfv 6544 NrmCVeccnv 29837 +π£ cpv 29838 BaseSetcba 29839 Β·π OLD cns 29840 normCVcnmcv 29843 SubSpcss 29974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-oprab 7413 df-1st 7975 df-2nd 7976 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-nmcv 29853 df-ssp 29975 |
This theorem is referenced by: sspg 29981 ssps 29983 sspmlem 29985 sspmval 29986 sspz 29988 sspn 29989 sspimsval 29991 minvecolem1 30127 minvecolem2 30128 minvecolem3 30129 minvecolem4b 30131 minvecolem4 30133 minvecolem5 30134 minvecolem6 30135 minvecolem7 30136 |
Copyright terms: Public domain | W3C validator |