MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspba Structured version   Visualization version   GIF version

Theorem sspba 30671
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspba.x 𝑋 = (BaseSet‘𝑈)
sspba.y 𝑌 = (BaseSet‘𝑊)
sspba.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspba ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌𝑋)

Proof of Theorem sspba
StepHypRef Expression
1 eqid 2729 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
2 eqid 2729 . . . . . 6 ( +𝑣𝑊) = ( +𝑣𝑊)
3 eqid 2729 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2729 . . . . . 6 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
5 eqid 2729 . . . . . 6 (normCV𝑈) = (normCV𝑈)
6 eqid 2729 . . . . . 6 (normCV𝑊) = (normCV𝑊)
7 sspba.h . . . . . 6 𝐻 = (SubSp‘𝑈)
81, 2, 3, 4, 5, 6, 7isssp 30668 . . . . 5 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
98simplbda 499 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))
109simp1d 1142 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ( +𝑣𝑊) ⊆ ( +𝑣𝑈))
11 rnss 5881 . . 3 (( +𝑣𝑊) ⊆ ( +𝑣𝑈) → ran ( +𝑣𝑊) ⊆ ran ( +𝑣𝑈))
1210, 11syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ran ( +𝑣𝑊) ⊆ ran ( +𝑣𝑈))
13 sspba.y . . 3 𝑌 = (BaseSet‘𝑊)
1413, 2bafval 30548 . 2 𝑌 = ran ( +𝑣𝑊)
15 sspba.x . . 3 𝑋 = (BaseSet‘𝑈)
1615, 1bafval 30548 . 2 𝑋 = ran ( +𝑣𝑈)
1712, 14, 163sstr4g 3989 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  ran crn 5620  cfv 6482  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530   ·𝑠OLD cns 30531  normCVcnmcv 30534  SubSpcss 30665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-oprab 7353  df-1st 7924  df-2nd 7925  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-nmcv 30544  df-ssp 30666
This theorem is referenced by:  sspg  30672  ssps  30674  sspmlem  30676  sspmval  30677  sspz  30679  sspn  30680  sspimsval  30682  minvecolem1  30818  minvecolem2  30819  minvecolem3  30820  minvecolem4b  30822  minvecolem4  30824  minvecolem5  30825  minvecolem6  30826  minvecolem7  30827
  Copyright terms: Public domain W3C validator