| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspba | Structured version Visualization version GIF version | ||
| Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspba.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| sspba.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspba.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspba | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 2 | eqid 2736 | . . . . . 6 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 3 | eqid 2736 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 5 | eqid 2736 | . . . . . 6 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 6 | eqid 2736 | . . . . . 6 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
| 7 | sspba.h | . . . . . 6 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isssp 30710 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
| 9 | 8 | simplbda 499 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))) |
| 10 | 9 | simp1d 1142 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈)) |
| 11 | rnss 5924 | . . 3 ⊢ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) |
| 13 | sspba.y | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 14 | 13, 2 | bafval 30590 | . 2 ⊢ 𝑌 = ran ( +𝑣 ‘𝑊) |
| 15 | sspba.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 16 | 15, 1 | bafval 30590 | . 2 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
| 17 | 12, 14, 16 | 3sstr4g 4017 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ran crn 5660 ‘cfv 6536 NrmCVeccnv 30570 +𝑣 cpv 30571 BaseSetcba 30572 ·𝑠OLD cns 30573 normCVcnmcv 30576 SubSpcss 30707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-oprab 7414 df-1st 7993 df-2nd 7994 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-nmcv 30586 df-ssp 30708 |
| This theorem is referenced by: sspg 30714 ssps 30716 sspmlem 30718 sspmval 30719 sspz 30721 sspn 30722 sspimsval 30724 minvecolem1 30860 minvecolem2 30861 minvecolem3 30862 minvecolem4b 30864 minvecolem4 30866 minvecolem5 30867 minvecolem6 30868 minvecolem7 30869 |
| Copyright terms: Public domain | W3C validator |