Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspba | Structured version Visualization version GIF version |
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspba.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
sspba.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
sspba.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspba | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | eqid 2738 | . . . . . 6 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
3 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
5 | eqid 2738 | . . . . . 6 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
6 | eqid 2738 | . . . . . 6 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
7 | sspba.h | . . . . . 6 ⊢ 𝐻 = (SubSp‘𝑈) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isssp 28987 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
9 | 8 | simplbda 499 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))) |
10 | 9 | simp1d 1140 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈)) |
11 | rnss 5837 | . . 3 ⊢ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) |
13 | sspba.y | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
14 | 13, 2 | bafval 28867 | . 2 ⊢ 𝑌 = ran ( +𝑣 ‘𝑊) |
15 | sspba.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
16 | 15, 1 | bafval 28867 | . 2 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
17 | 12, 14, 16 | 3sstr4g 3962 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ran crn 5581 ‘cfv 6418 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 ·𝑠OLD cns 28850 normCVcnmcv 28853 SubSpcss 28984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-oprab 7259 df-1st 7804 df-2nd 7805 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-nmcv 28863 df-ssp 28985 |
This theorem is referenced by: sspg 28991 ssps 28993 sspmlem 28995 sspmval 28996 sspz 28998 sspn 28999 sspimsval 29001 minvecolem1 29137 minvecolem2 29138 minvecolem3 29139 minvecolem4b 29141 minvecolem4 29143 minvecolem5 29144 minvecolem6 29145 minvecolem7 29146 |
Copyright terms: Public domain | W3C validator |