![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspba | Structured version Visualization version GIF version |
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspba.x | β’ π = (BaseSetβπ) |
sspba.y | β’ π = (BaseSetβπ) |
sspba.h | β’ π» = (SubSpβπ) |
Ref | Expression |
---|---|
sspba | β’ ((π β NrmCVec β§ π β π») β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . 6 β’ ( +π£ βπ) = ( +π£ βπ) | |
2 | eqid 2732 | . . . . . 6 β’ ( +π£ βπ) = ( +π£ βπ) | |
3 | eqid 2732 | . . . . . 6 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
4 | eqid 2732 | . . . . . 6 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
5 | eqid 2732 | . . . . . 6 β’ (normCVβπ) = (normCVβπ) | |
6 | eqid 2732 | . . . . . 6 β’ (normCVβπ) = (normCVβπ) | |
7 | sspba.h | . . . . . 6 β’ π» = (SubSpβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isssp 29964 | . . . . 5 β’ (π β NrmCVec β (π β π» β (π β NrmCVec β§ (( +π£ βπ) β ( +π£ βπ) β§ ( Β·π OLD βπ) β ( Β·π OLD βπ) β§ (normCVβπ) β (normCVβπ))))) |
9 | 8 | simplbda 500 | . . . 4 β’ ((π β NrmCVec β§ π β π») β (( +π£ βπ) β ( +π£ βπ) β§ ( Β·π OLD βπ) β ( Β·π OLD βπ) β§ (normCVβπ) β (normCVβπ))) |
10 | 9 | simp1d 1142 | . . 3 β’ ((π β NrmCVec β§ π β π») β ( +π£ βπ) β ( +π£ βπ)) |
11 | rnss 5936 | . . 3 β’ (( +π£ βπ) β ( +π£ βπ) β ran ( +π£ βπ) β ran ( +π£ βπ)) | |
12 | 10, 11 | syl 17 | . 2 β’ ((π β NrmCVec β§ π β π») β ran ( +π£ βπ) β ran ( +π£ βπ)) |
13 | sspba.y | . . 3 β’ π = (BaseSetβπ) | |
14 | 13, 2 | bafval 29844 | . 2 β’ π = ran ( +π£ βπ) |
15 | sspba.x | . . 3 β’ π = (BaseSetβπ) | |
16 | 15, 1 | bafval 29844 | . 2 β’ π = ran ( +π£ βπ) |
17 | 12, 14, 16 | 3sstr4g 4026 | 1 β’ ((π β NrmCVec β§ π β π») β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wss 3947 ran crn 5676 βcfv 6540 NrmCVeccnv 29824 +π£ cpv 29825 BaseSetcba 29826 Β·π OLD cns 29827 normCVcnmcv 29830 SubSpcss 29961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-oprab 7409 df-1st 7971 df-2nd 7972 df-vc 29799 df-nv 29832 df-va 29835 df-ba 29836 df-sm 29837 df-nmcv 29840 df-ssp 29962 |
This theorem is referenced by: sspg 29968 ssps 29970 sspmlem 29972 sspmval 29973 sspz 29975 sspn 29976 sspimsval 29978 minvecolem1 30114 minvecolem2 30115 minvecolem3 30116 minvecolem4b 30118 minvecolem4 30120 minvecolem5 30121 minvecolem6 30122 minvecolem7 30123 |
Copyright terms: Public domain | W3C validator |