Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspba | Structured version Visualization version GIF version |
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspba.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
sspba.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
sspba.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspba | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | eqid 2738 | . . . . . 6 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
3 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
5 | eqid 2738 | . . . . . 6 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
6 | eqid 2738 | . . . . . 6 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
7 | sspba.h | . . . . . 6 ⊢ 𝐻 = (SubSp‘𝑈) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isssp 29086 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
9 | 8 | simplbda 500 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))) |
10 | 9 | simp1d 1141 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈)) |
11 | rnss 5848 | . . 3 ⊢ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) |
13 | sspba.y | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
14 | 13, 2 | bafval 28966 | . 2 ⊢ 𝑌 = ran ( +𝑣 ‘𝑊) |
15 | sspba.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
16 | 15, 1 | bafval 28966 | . 2 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
17 | 12, 14, 16 | 3sstr4g 3966 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ran crn 5590 ‘cfv 6433 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 normCVcnmcv 28952 SubSpcss 29083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-oprab 7279 df-1st 7831 df-2nd 7832 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-nmcv 28962 df-ssp 29084 |
This theorem is referenced by: sspg 29090 ssps 29092 sspmlem 29094 sspmval 29095 sspz 29097 sspn 29098 sspimsval 29100 minvecolem1 29236 minvecolem2 29237 minvecolem3 29238 minvecolem4b 29240 minvecolem4 29242 minvecolem5 29243 minvecolem6 29244 minvecolem7 29245 |
Copyright terms: Public domain | W3C validator |