| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspba | Structured version Visualization version GIF version | ||
| Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspba.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| sspba.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspba.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspba | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 5 | eqid 2731 | . . . . . 6 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
| 7 | sspba.h | . . . . . 6 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isssp 30704 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
| 9 | 8 | simplbda 499 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))) |
| 10 | 9 | simp1d 1142 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈)) |
| 11 | rnss 5878 | . . 3 ⊢ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → ran ( +𝑣 ‘𝑊) ⊆ ran ( +𝑣 ‘𝑈)) |
| 13 | sspba.y | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 14 | 13, 2 | bafval 30584 | . 2 ⊢ 𝑌 = ran ( +𝑣 ‘𝑊) |
| 15 | sspba.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 16 | 15, 1 | bafval 30584 | . 2 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
| 17 | 12, 14, 16 | 3sstr4g 3983 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑌 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ran crn 5615 ‘cfv 6481 NrmCVeccnv 30564 +𝑣 cpv 30565 BaseSetcba 30566 ·𝑠OLD cns 30567 normCVcnmcv 30570 SubSpcss 30701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-nmcv 30580 df-ssp 30702 |
| This theorem is referenced by: sspg 30708 ssps 30710 sspmlem 30712 sspmval 30713 sspz 30715 sspn 30716 sspimsval 30718 minvecolem1 30854 minvecolem2 30855 minvecolem3 30856 minvecolem4b 30858 minvecolem4 30860 minvecolem5 30861 minvecolem6 30862 minvecolem7 30863 |
| Copyright terms: Public domain | W3C validator |