MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspba Structured version   Visualization version   GIF version

Theorem sspba 30713
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspba.x 𝑋 = (BaseSet‘𝑈)
sspba.y 𝑌 = (BaseSet‘𝑊)
sspba.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspba ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌𝑋)

Proof of Theorem sspba
StepHypRef Expression
1 eqid 2736 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
2 eqid 2736 . . . . . 6 ( +𝑣𝑊) = ( +𝑣𝑊)
3 eqid 2736 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2736 . . . . . 6 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
5 eqid 2736 . . . . . 6 (normCV𝑈) = (normCV𝑈)
6 eqid 2736 . . . . . 6 (normCV𝑊) = (normCV𝑊)
7 sspba.h . . . . . 6 𝐻 = (SubSp‘𝑈)
81, 2, 3, 4, 5, 6, 7isssp 30710 . . . . 5 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
98simplbda 499 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))
109simp1d 1142 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ( +𝑣𝑊) ⊆ ( +𝑣𝑈))
11 rnss 5924 . . 3 (( +𝑣𝑊) ⊆ ( +𝑣𝑈) → ran ( +𝑣𝑊) ⊆ ran ( +𝑣𝑈))
1210, 11syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ran ( +𝑣𝑊) ⊆ ran ( +𝑣𝑈))
13 sspba.y . . 3 𝑌 = (BaseSet‘𝑊)
1413, 2bafval 30590 . 2 𝑌 = ran ( +𝑣𝑊)
15 sspba.x . . 3 𝑋 = (BaseSet‘𝑈)
1615, 1bafval 30590 . 2 𝑋 = ran ( +𝑣𝑈)
1712, 14, 163sstr4g 4017 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  ran crn 5660  cfv 6536  NrmCVeccnv 30570   +𝑣 cpv 30571  BaseSetcba 30572   ·𝑠OLD cns 30573  normCVcnmcv 30576  SubSpcss 30707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-oprab 7414  df-1st 7993  df-2nd 7994  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-nmcv 30586  df-ssp 30708
This theorem is referenced by:  sspg  30714  ssps  30716  sspmlem  30718  sspmval  30719  sspz  30721  sspn  30722  sspimsval  30724  minvecolem1  30860  minvecolem2  30861  minvecolem3  30862  minvecolem4b  30864  minvecolem4  30866  minvecolem5  30867  minvecolem6  30868  minvecolem7  30869
  Copyright terms: Public domain W3C validator