Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem5 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem5 47872
Description: Lemma 5 for isubgr3stgr 47877. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem5 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐻𝑌) = (𝐹𝑌))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝑌
Allowed substitution hints:   𝑆(𝑖)   𝑈(𝑖)   𝐸(𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝑁(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem isubgr3stgrlem5
StepHypRef Expression
1 isubgr3stgr.h . . 3 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
21a1i 11 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖)))
3 imaeq2 6075 . . 3 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
43adantl 481 . 2 (((𝐹:𝐶𝑊𝑌𝐼) ∧ 𝑖 = 𝑌) → (𝐹𝑖) = (𝐹𝑌))
5 simpr 484 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → 𝑌𝐼)
6 id 22 . . . . 5 (𝐹:𝐶𝑊𝐹:𝐶𝑊)
7 isubgr3stgr.c . . . . . . 7 𝐶 = (𝐺 ClNeighbVtx 𝑋)
87ovexi 7464 . . . . . 6 𝐶 ∈ V
98a1i 11 . . . . 5 (𝐹:𝐶𝑊𝐶 ∈ V)
106, 9fexd 7246 . . . 4 (𝐹:𝐶𝑊𝐹 ∈ V)
1110adantr 480 . . 3 ((𝐹:𝐶𝑊𝑌𝐼) → 𝐹 ∈ V)
1211imaexd 7938 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐹𝑌) ∈ V)
132, 4, 5, 12fvmptd 7022 1 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐻𝑌) = (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  cmpt 5230  cima 5691  wf 6558  cfv 6562  (class class class)co 7430  0cn0 12523  Vtxcvtx 29027  Edgcedg 29078   NeighbVtx cnbgr 29363   ClNeighbVtx cclnbgr 47742   ISubGr cisubgr 47783  StarGrcstgr 47853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433
This theorem is referenced by:  isubgr3stgrlem8  47875  isubgr3stgrlem9  47876
  Copyright terms: Public domain W3C validator