Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem5 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem5 47964
Description: Lemma 5 for isubgr3stgr 47969. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem5 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐻𝑌) = (𝐹𝑌))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝑌
Allowed substitution hints:   𝑆(𝑖)   𝑈(𝑖)   𝐸(𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝑁(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem isubgr3stgrlem5
StepHypRef Expression
1 isubgr3stgr.h . . 3 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
21a1i 11 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖)))
3 imaeq2 6007 . . 3 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
43adantl 481 . 2 (((𝐹:𝐶𝑊𝑌𝐼) ∧ 𝑖 = 𝑌) → (𝐹𝑖) = (𝐹𝑌))
5 simpr 484 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → 𝑌𝐼)
6 id 22 . . . . 5 (𝐹:𝐶𝑊𝐹:𝐶𝑊)
7 isubgr3stgr.c . . . . . . 7 𝐶 = (𝐺 ClNeighbVtx 𝑋)
87ovexi 7383 . . . . . 6 𝐶 ∈ V
98a1i 11 . . . . 5 (𝐹:𝐶𝑊𝐶 ∈ V)
106, 9fexd 7163 . . . 4 (𝐹:𝐶𝑊𝐹 ∈ V)
1110adantr 480 . . 3 ((𝐹:𝐶𝑊𝑌𝐼) → 𝐹 ∈ V)
1211imaexd 7849 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐹𝑌) ∈ V)
132, 4, 5, 12fvmptd 6937 1 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐻𝑌) = (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cmpt 5173  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  0cn0 12384  Vtxcvtx 28941  Edgcedg 28992   NeighbVtx cnbgr 29277   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47854  StarGrcstgr 47945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352
This theorem is referenced by:  isubgr3stgrlem8  47967  isubgr3stgrlem9  47968
  Copyright terms: Public domain W3C validator