| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for isubgr3stgr 47978. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
| isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
| isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
| isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
| isubgr3stgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgr3stgr.i | ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) |
| isubgr3stgr.h | ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) |
| Ref | Expression |
|---|---|
| isubgr3stgrlem5 | ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐻‘𝑌) = (𝐹 “ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgr3stgr.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖))) |
| 3 | imaeq2 6030 | . . 3 ⊢ (𝑖 = 𝑌 → (𝐹 “ 𝑖) = (𝐹 “ 𝑌)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) ∧ 𝑖 = 𝑌) → (𝐹 “ 𝑖) = (𝐹 “ 𝑌)) |
| 5 | simpr 484 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝑌 ∈ 𝐼) | |
| 6 | id 22 | . . . . 5 ⊢ (𝐹:𝐶⟶𝑊 → 𝐹:𝐶⟶𝑊) | |
| 7 | isubgr3stgr.c | . . . . . . 7 ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) | |
| 8 | 7 | ovexi 7424 | . . . . . 6 ⊢ 𝐶 ∈ V |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐹:𝐶⟶𝑊 → 𝐶 ∈ V) |
| 10 | 6, 9 | fexd 7204 | . . . 4 ⊢ (𝐹:𝐶⟶𝑊 → 𝐹 ∈ V) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝐹 ∈ V) |
| 12 | 11 | imaexd 7895 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐹 “ 𝑌) ∈ V) |
| 13 | 2, 4, 5, 12 | fvmptd 6978 | 1 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐻‘𝑌) = (𝐹 “ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℕ0cn0 12449 Vtxcvtx 28930 Edgcedg 28981 NeighbVtx cnbgr 29266 ClNeighbVtx cclnbgr 47823 ISubGr cisubgr 47864 StarGrcstgr 47954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: isubgr3stgrlem8 47976 isubgr3stgrlem9 47977 |
| Copyright terms: Public domain | W3C validator |