Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem5 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem5 48069
Description: Lemma 5 for isubgr3stgr 48074. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem5 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐻𝑌) = (𝐹𝑌))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝑌
Allowed substitution hints:   𝑆(𝑖)   𝑈(𝑖)   𝐸(𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝑁(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem isubgr3stgrlem5
StepHypRef Expression
1 isubgr3stgr.h . . 3 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
21a1i 11 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖)))
3 imaeq2 6004 . . 3 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
43adantl 481 . 2 (((𝐹:𝐶𝑊𝑌𝐼) ∧ 𝑖 = 𝑌) → (𝐹𝑖) = (𝐹𝑌))
5 simpr 484 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → 𝑌𝐼)
6 id 22 . . . . 5 (𝐹:𝐶𝑊𝐹:𝐶𝑊)
7 isubgr3stgr.c . . . . . . 7 𝐶 = (𝐺 ClNeighbVtx 𝑋)
87ovexi 7380 . . . . . 6 𝐶 ∈ V
98a1i 11 . . . . 5 (𝐹:𝐶𝑊𝐶 ∈ V)
106, 9fexd 7161 . . . 4 (𝐹:𝐶𝑊𝐹 ∈ V)
1110adantr 480 . . 3 ((𝐹:𝐶𝑊𝑌𝐼) → 𝐹 ∈ V)
1211imaexd 7846 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐹𝑌) ∈ V)
132, 4, 5, 12fvmptd 6936 1 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐻𝑌) = (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5170  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  0cn0 12381  Vtxcvtx 28974  Edgcedg 29025   NeighbVtx cnbgr 29310   ClNeighbVtx cclnbgr 47917   ISubGr cisubgr 47959  StarGrcstgr 48050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349
This theorem is referenced by:  isubgr3stgrlem8  48072  isubgr3stgrlem9  48073
  Copyright terms: Public domain W3C validator