![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for isubgr3stgr 47877. (Contributed by AV, 24-Sep-2025.) |
Ref | Expression |
---|---|
isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
isubgr3stgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
isubgr3stgr.i | ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) |
isubgr3stgr.h | ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) |
Ref | Expression |
---|---|
isubgr3stgrlem5 | ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐻‘𝑌) = (𝐹 “ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isubgr3stgr.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖))) |
3 | imaeq2 6075 | . . 3 ⊢ (𝑖 = 𝑌 → (𝐹 “ 𝑖) = (𝐹 “ 𝑌)) | |
4 | 3 | adantl 481 | . 2 ⊢ (((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) ∧ 𝑖 = 𝑌) → (𝐹 “ 𝑖) = (𝐹 “ 𝑌)) |
5 | simpr 484 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝑌 ∈ 𝐼) | |
6 | id 22 | . . . . 5 ⊢ (𝐹:𝐶⟶𝑊 → 𝐹:𝐶⟶𝑊) | |
7 | isubgr3stgr.c | . . . . . . 7 ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) | |
8 | 7 | ovexi 7464 | . . . . . 6 ⊢ 𝐶 ∈ V |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐹:𝐶⟶𝑊 → 𝐶 ∈ V) |
10 | 6, 9 | fexd 7246 | . . . 4 ⊢ (𝐹:𝐶⟶𝑊 → 𝐹 ∈ V) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝐹 ∈ V) |
12 | 11 | imaexd 7938 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐹 “ 𝑌) ∈ V) |
13 | 2, 4, 5, 12 | fvmptd 7022 | 1 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐻‘𝑌) = (𝐹 “ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ↦ cmpt 5230 “ cima 5691 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℕ0cn0 12523 Vtxcvtx 29027 Edgcedg 29078 NeighbVtx cnbgr 29363 ClNeighbVtx cclnbgr 47742 ISubGr cisubgr 47783 StarGrcstgr 47853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 |
This theorem is referenced by: isubgr3stgrlem8 47875 isubgr3stgrlem9 47876 |
Copyright terms: Public domain | W3C validator |