| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for isubgr3stgr 48074. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
| isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
| isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
| isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
| isubgr3stgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgr3stgr.i | ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) |
| isubgr3stgr.h | ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) |
| Ref | Expression |
|---|---|
| isubgr3stgrlem5 | ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐻‘𝑌) = (𝐹 “ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgr3stgr.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖))) |
| 3 | imaeq2 6004 | . . 3 ⊢ (𝑖 = 𝑌 → (𝐹 “ 𝑖) = (𝐹 “ 𝑌)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) ∧ 𝑖 = 𝑌) → (𝐹 “ 𝑖) = (𝐹 “ 𝑌)) |
| 5 | simpr 484 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝑌 ∈ 𝐼) | |
| 6 | id 22 | . . . . 5 ⊢ (𝐹:𝐶⟶𝑊 → 𝐹:𝐶⟶𝑊) | |
| 7 | isubgr3stgr.c | . . . . . . 7 ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) | |
| 8 | 7 | ovexi 7380 | . . . . . 6 ⊢ 𝐶 ∈ V |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐹:𝐶⟶𝑊 → 𝐶 ∈ V) |
| 10 | 6, 9 | fexd 7161 | . . . 4 ⊢ (𝐹:𝐶⟶𝑊 → 𝐹 ∈ V) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → 𝐹 ∈ V) |
| 12 | 11 | imaexd 7846 | . 2 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐹 “ 𝑌) ∈ V) |
| 13 | 2, 4, 5, 12 | fvmptd 6936 | 1 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐻‘𝑌) = (𝐹 “ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℕ0cn0 12381 Vtxcvtx 28974 Edgcedg 29025 NeighbVtx cnbgr 29310 ClNeighbVtx cclnbgr 47917 ISubGr cisubgr 47959 StarGrcstgr 48050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: isubgr3stgrlem8 48072 isubgr3stgrlem9 48073 |
| Copyright terms: Public domain | W3C validator |