Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem5 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem5 47962
Description: Lemma 5 for isubgr3stgr 47967. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem5 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐻𝑌) = (𝐹𝑌))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝑌
Allowed substitution hints:   𝑆(𝑖)   𝑈(𝑖)   𝐸(𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝑁(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem isubgr3stgrlem5
StepHypRef Expression
1 isubgr3stgr.h . . 3 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
21a1i 11 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖)))
3 imaeq2 6016 . . 3 (𝑖 = 𝑌 → (𝐹𝑖) = (𝐹𝑌))
43adantl 481 . 2 (((𝐹:𝐶𝑊𝑌𝐼) ∧ 𝑖 = 𝑌) → (𝐹𝑖) = (𝐹𝑌))
5 simpr 484 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → 𝑌𝐼)
6 id 22 . . . . 5 (𝐹:𝐶𝑊𝐹:𝐶𝑊)
7 isubgr3stgr.c . . . . . . 7 𝐶 = (𝐺 ClNeighbVtx 𝑋)
87ovexi 7403 . . . . . 6 𝐶 ∈ V
98a1i 11 . . . . 5 (𝐹:𝐶𝑊𝐶 ∈ V)
106, 9fexd 7183 . . . 4 (𝐹:𝐶𝑊𝐹 ∈ V)
1110adantr 480 . . 3 ((𝐹:𝐶𝑊𝑌𝐼) → 𝐹 ∈ V)
1211imaexd 7872 . 2 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐹𝑌) ∈ V)
132, 4, 5, 12fvmptd 6957 1 ((𝐹:𝐶𝑊𝑌𝐼) → (𝐻𝑌) = (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  0cn0 12418  Vtxcvtx 28976  Edgcedg 29027   NeighbVtx cnbgr 29312   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47853  StarGrcstgr 47943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372
This theorem is referenced by:  isubgr3stgrlem8  47965  isubgr3stgrlem9  47966
  Copyright terms: Public domain W3C validator