Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem8 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem8 47976
Description: Lemma 8 for isubgr3stgr 47978. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼1-1-onto→(Edg‘(StarGr‘𝑁)))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸,𝑥,𝑦   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖,𝑥,𝑦   𝑖,𝑉   𝑖,𝑋   𝑦,𝐶   𝑦,𝐹   𝑦,𝐺   𝑦,𝐼   𝑦,𝑁   𝑦,𝑉   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝐶(𝑥)   𝑆(𝑥,𝑦,𝑖)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥,𝑦,𝑖)   𝐼(𝑥)   𝑁(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem isubgr3stgrlem8
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isubgr3stgr.h . . 3 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
2 imaeq2 6030 . . . 4 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
32cbvmptv 5214 . . 3 (𝑖𝐼 ↦ (𝐹𝑖)) = (𝑘𝐼 ↦ (𝐹𝑘))
41, 3eqtri 2753 . 2 𝐻 = (𝑘𝐼 ↦ (𝐹𝑘))
5 f1of 6803 . . . . 5 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶𝑊)
65ad2antrl 728 . . . 4 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝐶𝑊)
7 isubgr3stgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
8 isubgr3stgr.u . . . . 5 𝑈 = (𝐺 NeighbVtx 𝑋)
9 isubgr3stgr.c . . . . 5 𝐶 = (𝐺 ClNeighbVtx 𝑋)
10 isubgr3stgr.n . . . . 5 𝑁 ∈ ℕ0
11 isubgr3stgr.s . . . . 5 𝑆 = (StarGr‘𝑁)
12 isubgr3stgr.w . . . . 5 𝑊 = (Vtx‘𝑆)
13 isubgr3stgr.e . . . . 5 𝐸 = (Edg‘𝐺)
14 isubgr3stgr.i . . . . 5 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
157, 8, 9, 10, 11, 12, 13, 14, 1isubgr3stgrlem5 47973 . . . 4 ((𝐹:𝐶𝑊𝑘𝐼) → (𝐻𝑘) = (𝐹𝑘))
166, 15sylan 580 . . 3 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑘𝐼) → (𝐻𝑘) = (𝐹𝑘))
177, 8, 9, 10, 11, 12, 13, 14, 1isubgr3stgrlem6 47974 . . . 4 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
1817ffvelcdmda 7059 . . 3 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑘𝐼) → (𝐻𝑘) ∈ (Edg‘(StarGr‘𝑁)))
1916, 18eqeltrrd 2830 . 2 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (Edg‘(StarGr‘𝑁)))
207, 8, 9, 10, 11, 12, 13, 14, 1isubgr3stgrlem7 47975 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝑗 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝑗) ∈ 𝐼)
2120ad4ant134 1175 . 2 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑗 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝑗) ∈ 𝐼)
22 f1ofo 6810 . . . . . 6 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶onto𝑊)
2322ad2antrl 728 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝐶onto𝑊)
24 stgrusgra 47962 . . . . . . 7 (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph)
2510, 24mp1i 13 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (StarGr‘𝑁) ∈ USGraph)
26 simpr 484 . . . . . 6 ((𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁))) → 𝑗 ∈ (Edg‘(StarGr‘𝑁)))
2711fveq2i 6864 . . . . . . . . 9 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
2812, 27eqtri 2753 . . . . . . . 8 𝑊 = (Vtx‘(StarGr‘𝑁))
29 eqid 2730 . . . . . . . 8 (Edg‘(StarGr‘𝑁)) = (Edg‘(StarGr‘𝑁))
3028, 29edgssv2 29132 . . . . . . 7 (((StarGr‘𝑁) ∈ USGraph ∧ 𝑗 ∈ (Edg‘(StarGr‘𝑁))) → (𝑗𝑊 ∧ (♯‘𝑗) = 2))
3130simpld 494 . . . . . 6 (((StarGr‘𝑁) ∈ USGraph ∧ 𝑗 ∈ (Edg‘(StarGr‘𝑁))) → 𝑗𝑊)
3225, 26, 31syl2an 596 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁)))) → 𝑗𝑊)
33 foimacnv 6820 . . . . 5 ((𝐹:𝐶onto𝑊𝑗𝑊) → (𝐹 “ (𝐹𝑗)) = 𝑗)
3423, 32, 33syl2an2r 685 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁)))) → (𝐹 “ (𝐹𝑗)) = 𝑗)
35 imaeq2 6030 . . . . 5 (𝑘 = (𝐹𝑗) → (𝐹𝑘) = (𝐹 “ (𝐹𝑗)))
3635eqcomd 2736 . . . 4 (𝑘 = (𝐹𝑗) → (𝐹 “ (𝐹𝑗)) = (𝐹𝑘))
3734, 36sylan9req 2786 . . 3 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁)))) ∧ 𝑘 = (𝐹𝑗)) → 𝑗 = (𝐹𝑘))
38 imaeq2 6030 . . . . 5 (𝑗 = (𝐹𝑘) → (𝐹𝑗) = (𝐹 “ (𝐹𝑘)))
39 f1of1 6802 . . . . . . 7 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶1-1𝑊)
4039ad2antrl 728 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝐶1-1𝑊)
41 usgruhgr 29120 . . . . . . . . . 10 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
4241ad2antrr 726 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐺 ∈ UHGraph)
437clnbgrssvtx 47836 . . . . . . . . . . 11 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
449, 43eqsstri 3996 . . . . . . . . . 10 𝐶𝑉
4544a1i 11 . . . . . . . . 9 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐶𝑉)
46 eqid 2730 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
47 eqid 2730 . . . . . . . . . 10 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
487, 46, 47, 14isubgredg 47870 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → (𝑘𝐼 ↔ (𝑘 ∈ (Edg‘𝐺) ∧ 𝑘𝐶)))
4942, 45, 48syl2an 596 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑘𝐼 ↔ (𝑘 ∈ (Edg‘𝐺) ∧ 𝑘𝐶)))
50 simpr 484 . . . . . . . . 9 ((𝑘 ∈ (Edg‘𝐺) ∧ 𝑘𝐶) → 𝑘𝐶)
5150a1d 25 . . . . . . . 8 ((𝑘 ∈ (Edg‘𝐺) ∧ 𝑘𝐶) → (𝑗 ∈ (Edg‘(StarGr‘𝑁)) → 𝑘𝐶))
5249, 51biimtrdi 253 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑘𝐼 → (𝑗 ∈ (Edg‘(StarGr‘𝑁)) → 𝑘𝐶)))
5352imp32 418 . . . . . 6 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁)))) → 𝑘𝐶)
54 f1imacnv 6819 . . . . . 6 ((𝐹:𝐶1-1𝑊𝑘𝐶) → (𝐹 “ (𝐹𝑘)) = 𝑘)
5540, 53, 54syl2an2r 685 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁)))) → (𝐹 “ (𝐹𝑘)) = 𝑘)
5638, 55sylan9eqr 2787 . . . 4 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁)))) ∧ 𝑗 = (𝐹𝑘)) → (𝐹𝑗) = 𝑘)
5756eqcomd 2736 . . 3 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁)))) ∧ 𝑗 = (𝐹𝑘)) → 𝑘 = (𝐹𝑗))
5837, 57impbida 800 . 2 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑘𝐼𝑗 ∈ (Edg‘(StarGr‘𝑁)))) → (𝑘 = (𝐹𝑗) ↔ 𝑗 = (𝐹𝑘)))
594, 19, 21, 58f1o2d 7646 1 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼1-1-onto→(Edg‘(StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnel 3030  wral 3045  wss 3917  {cpr 4594  cmpt 5191  ccnv 5640  cima 5644  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  2c2 12248  0cn0 12449  chash 14302  Vtxcvtx 28930  Edgcedg 28981  UHGraphcuhgr 28990  USGraphcusgr 29083   NeighbVtx cnbgr 29266   ClNeighbVtx cclnbgr 47823   ISubGr cisubgr 47864  StarGrcstgr 47954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-hash 14303  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-edgf 28923  df-vtx 28932  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-umgr 29017  df-uspgr 29084  df-usgr 29085  df-nbgr 29267  df-clnbgr 47824  df-isubgr 47865  df-stgr 47955
This theorem is referenced by:  isubgr3stgrlem9  47977
  Copyright terms: Public domain W3C validator