Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem4 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem4 47961
Description: Lemma 4 for isubgr3stgr 47967. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isubgr3stgrlem4 ((𝐴 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝑧,𝑁   𝑧,𝑊   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝑈(𝑧)   𝐸(𝑧)   𝐺(𝑧)   𝑉(𝑧)

Proof of Theorem isubgr3stgrlem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 4694 . . . . . 6 (𝑧 = (𝐹𝐵) → {0, 𝑧} = {0, (𝐹𝐵)})
21eqeq2d 2740 . . . . 5 (𝑧 = (𝐹𝐵) → ((𝐹 “ {𝑋, 𝐵}) = {0, 𝑧} ↔ (𝐹 “ {𝑋, 𝐵}) = {0, (𝐹𝐵)}))
3 f1of 6782 . . . . . . . . 9 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶𝑊)
43adantr 480 . . . . . . . 8 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹:𝐶𝑊)
54adantr 480 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → 𝐹:𝐶𝑊)
6 simpr3 1197 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → 𝐵𝐶)
75, 6ffvelcdmd 7039 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝐵) ∈ 𝑊)
8 isubgr3stgr.w . . . . . . . . . 10 𝑊 = (Vtx‘𝑆)
9 isubgr3stgr.s . . . . . . . . . . 11 𝑆 = (StarGr‘𝑁)
109fveq2i 6843 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
11 isubgr3stgr.n . . . . . . . . . . 11 𝑁 ∈ ℕ0
12 stgrvtx 47946 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
1311, 12ax-mp 5 . . . . . . . . . 10 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
148, 10, 133eqtri 2756 . . . . . . . . 9 𝑊 = (0...𝑁)
1514eleq2i 2820 . . . . . . . 8 ((𝐹𝐵) ∈ 𝑊 ↔ (𝐹𝐵) ∈ (0...𝑁))
16 fz0sn0fz1 13582 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (0...𝑁) = ({0} ∪ (1...𝑁)))
1711, 16ax-mp 5 . . . . . . . . 9 (0...𝑁) = ({0} ∪ (1...𝑁))
1817eleq2i 2820 . . . . . . . 8 ((𝐹𝐵) ∈ (0...𝑁) ↔ (𝐹𝐵) ∈ ({0} ∪ (1...𝑁)))
19 elun 4112 . . . . . . . . 9 ((𝐹𝐵) ∈ ({0} ∪ (1...𝑁)) ↔ ((𝐹𝐵) ∈ {0} ∨ (𝐹𝐵) ∈ (1...𝑁)))
20 fvex 6853 . . . . . . . . . . 11 (𝐹𝐵) ∈ V
2120elsn 4600 . . . . . . . . . 10 ((𝐹𝐵) ∈ {0} ↔ (𝐹𝐵) = 0)
2221orbi1i 913 . . . . . . . . 9 (((𝐹𝐵) ∈ {0} ∨ (𝐹𝐵) ∈ (1...𝑁)) ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
2319, 22bitri 275 . . . . . . . 8 ((𝐹𝐵) ∈ ({0} ∪ (1...𝑁)) ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
2415, 18, 233bitri 297 . . . . . . 7 ((𝐹𝐵) ∈ 𝑊 ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
25 eqeq2 2741 . . . . . . . . . . 11 ((𝐹𝑋) = 0 → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
2625adantl 481 . . . . . . . . . 10 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
2726adantr 480 . . . . . . . . 9 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
28 f1of1 6781 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶1-1𝑊)
29 dff14a 7227 . . . . . . . . . . . . 13 (𝐹:𝐶1-1𝑊 ↔ (𝐹:𝐶𝑊 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
30 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → 𝑎 = 𝑋)
31 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → 𝑏 = 𝐵)
3230, 31neeq12d 2986 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝑎𝑏𝑋𝐵))
33 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
3433adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝐹𝑎) = (𝐹𝑋))
35 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
3635adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝐹𝑏) = (𝐹𝐵))
3734, 36neeq12d 2986 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝑋𝑏 = 𝐵) → ((𝐹𝑎) ≠ (𝐹𝑏) ↔ (𝐹𝑋) ≠ (𝐹𝐵)))
3832, 37imbi12d 344 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝑋𝑏 = 𝐵) → ((𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) ↔ (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
3938rspc2gv 3595 . . . . . . . . . . . . . . . 16 ((𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
40393adant1 1130 . . . . . . . . . . . . . . 15 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
41 id 22 . . . . . . . . . . . . . . . . 17 ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)))
42 eqneqall 2936 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑋) = (𝐹𝐵) → ((𝐹𝑋) ≠ (𝐹𝐵) → (𝐹𝐵) ∈ (1...𝑁)))
4342eqcoms 2737 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐵) = (𝐹𝑋) → ((𝐹𝑋) ≠ (𝐹𝐵) → (𝐹𝐵) ∈ (1...𝑁)))
4443com12 32 . . . . . . . . . . . . . . . . 17 ((𝐹𝑋) ≠ (𝐹𝐵) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁)))
4541, 44syl6com 37 . . . . . . . . . . . . . . . 16 (𝑋𝐵 → ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
46453ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4740, 46syld 47 . . . . . . . . . . . . . 14 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4847adantld 490 . . . . . . . . . . . . 13 ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹:𝐶𝑊 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4929, 48biimtrid 242 . . . . . . . . . . . 12 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (𝐹:𝐶1-1𝑊 → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5028, 49syl5com 31 . . . . . . . . . . 11 (𝐹:𝐶1-1-onto𝑊 → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5150adantr 480 . . . . . . . . . 10 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5251imp 406 . . . . . . . . 9 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁)))
5327, 52sylbird 260 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = 0 → (𝐹𝐵) ∈ (1...𝑁)))
54 idd 24 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) ∈ (1...𝑁) → (𝐹𝐵) ∈ (1...𝑁)))
5553, 54jaod 859 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)) → (𝐹𝐵) ∈ (1...𝑁)))
5624, 55biimtrid 242 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) ∈ 𝑊 → (𝐹𝐵) ∈ (1...𝑁)))
577, 56mpd 15 . . . . 5 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝐵) ∈ (1...𝑁))
58 f1ofn 6783 . . . . . . . . . 10 (𝐹:𝐶1-1-onto𝑊𝐹 Fn 𝐶)
5958adantr 480 . . . . . . . . 9 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹 Fn 𝐶)
60 3simpc 1150 . . . . . . . . 9 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (𝑋𝐶𝐵𝐶))
6159, 60anim12i 613 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 Fn 𝐶 ∧ (𝑋𝐶𝐵𝐶)))
62 3anass 1094 . . . . . . . 8 ((𝐹 Fn 𝐶𝑋𝐶𝐵𝐶) ↔ (𝐹 Fn 𝐶 ∧ (𝑋𝐶𝐵𝐶)))
6361, 62sylibr 234 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 Fn 𝐶𝑋𝐶𝐵𝐶))
64 fnimapr 6926 . . . . . . 7 ((𝐹 Fn 𝐶𝑋𝐶𝐵𝐶) → (𝐹 “ {𝑋, 𝐵}) = {(𝐹𝑋), (𝐹𝐵)})
6563, 64syl 17 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 “ {𝑋, 𝐵}) = {(𝐹𝑋), (𝐹𝐵)})
66 simpr 484 . . . . . . . 8 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → (𝐹𝑋) = 0)
6766adantr 480 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝑋) = 0)
6867preq1d 4699 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → {(𝐹𝑋), (𝐹𝐵)} = {0, (𝐹𝐵)})
6965, 68eqtrd 2764 . . . . 5 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 “ {𝑋, 𝐵}) = {0, (𝐹𝐵)})
702, 57, 69rspcedvdw 3588 . . . 4 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧})
7170ex 412 . . 3 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
72 neeq1 2987 . . . . 5 (𝐴 = 𝑋 → (𝐴𝐵𝑋𝐵))
73 eleq1 2816 . . . . 5 (𝐴 = 𝑋 → (𝐴𝐶𝑋𝐶))
7472, 733anbi12d 1439 . . . 4 (𝐴 = 𝑋 → ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶𝐵𝐶)))
75 preq1 4693 . . . . . . 7 (𝐴 = 𝑋 → {𝐴, 𝐵} = {𝑋, 𝐵})
7675imaeq2d 6020 . . . . . 6 (𝐴 = 𝑋 → (𝐹 “ {𝐴, 𝐵}) = (𝐹 “ {𝑋, 𝐵}))
7776eqeq1d 2731 . . . . 5 (𝐴 = 𝑋 → ((𝐹 “ {𝐴, 𝐵}) = {0, 𝑧} ↔ (𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
7877rexbidv 3157 . . . 4 (𝐴 = 𝑋 → (∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
7974, 78imbi12d 344 . . 3 (𝐴 = 𝑋 → (((𝐴𝐵𝐴𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧}) ↔ ((𝑋𝐵𝑋𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧})))
8071, 79imbitrrid 246 . 2 (𝐴 = 𝑋 → ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})))
81803imp 1110 1 ((𝐴 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cun 3909  {csn 4585  {cpr 4587  cima 5634   Fn wfn 6494  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  0cn0 12418  ...cfz 13444  Vtxcvtx 28976  Edgcedg 29027   NeighbVtx cnbgr 29312   ClNeighbVtx cclnbgr 47812  StarGrcstgr 47943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-hash 14272  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28969  df-vtx 28978  df-stgr 47944
This theorem is referenced by:  isubgr3stgrlem6  47963
  Copyright terms: Public domain W3C validator