Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem4 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem4 47963
Description: Lemma 4 for isubgr3stgr 47969. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isubgr3stgrlem4 ((𝐴 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝑧,𝑁   𝑧,𝑊   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝑈(𝑧)   𝐸(𝑧)   𝐺(𝑧)   𝑉(𝑧)

Proof of Theorem isubgr3stgrlem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 4686 . . . . . 6 (𝑧 = (𝐹𝐵) → {0, 𝑧} = {0, (𝐹𝐵)})
21eqeq2d 2740 . . . . 5 (𝑧 = (𝐹𝐵) → ((𝐹 “ {𝑋, 𝐵}) = {0, 𝑧} ↔ (𝐹 “ {𝑋, 𝐵}) = {0, (𝐹𝐵)}))
3 f1of 6764 . . . . . . . . 9 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶𝑊)
43adantr 480 . . . . . . . 8 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹:𝐶𝑊)
54adantr 480 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → 𝐹:𝐶𝑊)
6 simpr3 1197 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → 𝐵𝐶)
75, 6ffvelcdmd 7019 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝐵) ∈ 𝑊)
8 isubgr3stgr.w . . . . . . . . . 10 𝑊 = (Vtx‘𝑆)
9 isubgr3stgr.s . . . . . . . . . . 11 𝑆 = (StarGr‘𝑁)
109fveq2i 6825 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
11 isubgr3stgr.n . . . . . . . . . . 11 𝑁 ∈ ℕ0
12 stgrvtx 47948 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
1311, 12ax-mp 5 . . . . . . . . . 10 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
148, 10, 133eqtri 2756 . . . . . . . . 9 𝑊 = (0...𝑁)
1514eleq2i 2820 . . . . . . . 8 ((𝐹𝐵) ∈ 𝑊 ↔ (𝐹𝐵) ∈ (0...𝑁))
16 fz0sn0fz1 13548 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (0...𝑁) = ({0} ∪ (1...𝑁)))
1711, 16ax-mp 5 . . . . . . . . 9 (0...𝑁) = ({0} ∪ (1...𝑁))
1817eleq2i 2820 . . . . . . . 8 ((𝐹𝐵) ∈ (0...𝑁) ↔ (𝐹𝐵) ∈ ({0} ∪ (1...𝑁)))
19 elun 4104 . . . . . . . . 9 ((𝐹𝐵) ∈ ({0} ∪ (1...𝑁)) ↔ ((𝐹𝐵) ∈ {0} ∨ (𝐹𝐵) ∈ (1...𝑁)))
20 fvex 6835 . . . . . . . . . . 11 (𝐹𝐵) ∈ V
2120elsn 4592 . . . . . . . . . 10 ((𝐹𝐵) ∈ {0} ↔ (𝐹𝐵) = 0)
2221orbi1i 913 . . . . . . . . 9 (((𝐹𝐵) ∈ {0} ∨ (𝐹𝐵) ∈ (1...𝑁)) ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
2319, 22bitri 275 . . . . . . . 8 ((𝐹𝐵) ∈ ({0} ∪ (1...𝑁)) ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
2415, 18, 233bitri 297 . . . . . . 7 ((𝐹𝐵) ∈ 𝑊 ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
25 eqeq2 2741 . . . . . . . . . . 11 ((𝐹𝑋) = 0 → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
2625adantl 481 . . . . . . . . . 10 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
2726adantr 480 . . . . . . . . 9 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
28 f1of1 6763 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶1-1𝑊)
29 dff14a 7207 . . . . . . . . . . . . 13 (𝐹:𝐶1-1𝑊 ↔ (𝐹:𝐶𝑊 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
30 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → 𝑎 = 𝑋)
31 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → 𝑏 = 𝐵)
3230, 31neeq12d 2986 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝑎𝑏𝑋𝐵))
33 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
3433adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝐹𝑎) = (𝐹𝑋))
35 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
3635adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝐹𝑏) = (𝐹𝐵))
3734, 36neeq12d 2986 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝑋𝑏 = 𝐵) → ((𝐹𝑎) ≠ (𝐹𝑏) ↔ (𝐹𝑋) ≠ (𝐹𝐵)))
3832, 37imbi12d 344 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝑋𝑏 = 𝐵) → ((𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) ↔ (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
3938rspc2gv 3587 . . . . . . . . . . . . . . . 16 ((𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
40393adant1 1130 . . . . . . . . . . . . . . 15 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
41 id 22 . . . . . . . . . . . . . . . . 17 ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)))
42 eqneqall 2936 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑋) = (𝐹𝐵) → ((𝐹𝑋) ≠ (𝐹𝐵) → (𝐹𝐵) ∈ (1...𝑁)))
4342eqcoms 2737 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐵) = (𝐹𝑋) → ((𝐹𝑋) ≠ (𝐹𝐵) → (𝐹𝐵) ∈ (1...𝑁)))
4443com12 32 . . . . . . . . . . . . . . . . 17 ((𝐹𝑋) ≠ (𝐹𝐵) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁)))
4541, 44syl6com 37 . . . . . . . . . . . . . . . 16 (𝑋𝐵 → ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
46453ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4740, 46syld 47 . . . . . . . . . . . . . 14 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4847adantld 490 . . . . . . . . . . . . 13 ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹:𝐶𝑊 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4929, 48biimtrid 242 . . . . . . . . . . . 12 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (𝐹:𝐶1-1𝑊 → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5028, 49syl5com 31 . . . . . . . . . . 11 (𝐹:𝐶1-1-onto𝑊 → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5150adantr 480 . . . . . . . . . 10 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5251imp 406 . . . . . . . . 9 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁)))
5327, 52sylbird 260 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = 0 → (𝐹𝐵) ∈ (1...𝑁)))
54 idd 24 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) ∈ (1...𝑁) → (𝐹𝐵) ∈ (1...𝑁)))
5553, 54jaod 859 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)) → (𝐹𝐵) ∈ (1...𝑁)))
5624, 55biimtrid 242 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) ∈ 𝑊 → (𝐹𝐵) ∈ (1...𝑁)))
577, 56mpd 15 . . . . 5 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝐵) ∈ (1...𝑁))
58 f1ofn 6765 . . . . . . . . . 10 (𝐹:𝐶1-1-onto𝑊𝐹 Fn 𝐶)
5958adantr 480 . . . . . . . . 9 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹 Fn 𝐶)
60 3simpc 1150 . . . . . . . . 9 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (𝑋𝐶𝐵𝐶))
6159, 60anim12i 613 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 Fn 𝐶 ∧ (𝑋𝐶𝐵𝐶)))
62 3anass 1094 . . . . . . . 8 ((𝐹 Fn 𝐶𝑋𝐶𝐵𝐶) ↔ (𝐹 Fn 𝐶 ∧ (𝑋𝐶𝐵𝐶)))
6361, 62sylibr 234 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 Fn 𝐶𝑋𝐶𝐵𝐶))
64 fnimapr 6906 . . . . . . 7 ((𝐹 Fn 𝐶𝑋𝐶𝐵𝐶) → (𝐹 “ {𝑋, 𝐵}) = {(𝐹𝑋), (𝐹𝐵)})
6563, 64syl 17 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 “ {𝑋, 𝐵}) = {(𝐹𝑋), (𝐹𝐵)})
66 simpr 484 . . . . . . . 8 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → (𝐹𝑋) = 0)
6766adantr 480 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝑋) = 0)
6867preq1d 4691 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → {(𝐹𝑋), (𝐹𝐵)} = {0, (𝐹𝐵)})
6965, 68eqtrd 2764 . . . . 5 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 “ {𝑋, 𝐵}) = {0, (𝐹𝐵)})
702, 57, 69rspcedvdw 3580 . . . 4 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧})
7170ex 412 . . 3 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
72 neeq1 2987 . . . . 5 (𝐴 = 𝑋 → (𝐴𝐵𝑋𝐵))
73 eleq1 2816 . . . . 5 (𝐴 = 𝑋 → (𝐴𝐶𝑋𝐶))
7472, 733anbi12d 1439 . . . 4 (𝐴 = 𝑋 → ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶𝐵𝐶)))
75 preq1 4685 . . . . . . 7 (𝐴 = 𝑋 → {𝐴, 𝐵} = {𝑋, 𝐵})
7675imaeq2d 6011 . . . . . 6 (𝐴 = 𝑋 → (𝐹 “ {𝐴, 𝐵}) = (𝐹 “ {𝑋, 𝐵}))
7776eqeq1d 2731 . . . . 5 (𝐴 = 𝑋 → ((𝐹 “ {𝐴, 𝐵}) = {0, 𝑧} ↔ (𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
7877rexbidv 3153 . . . 4 (𝐴 = 𝑋 → (∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
7974, 78imbi12d 344 . . 3 (𝐴 = 𝑋 → (((𝐴𝐵𝐴𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧}) ↔ ((𝑋𝐵𝑋𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧})))
8071, 79imbitrrid 246 . 2 (𝐴 = 𝑋 → ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})))
81803imp 1110 1 ((𝐴 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cun 3901  {csn 4577  {cpr 4579  cima 5622   Fn wfn 6477  wf 6478  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010  0cn0 12384  ...cfz 13410  Vtxcvtx 28941  Edgcedg 28992   NeighbVtx cnbgr 29277   ClNeighbVtx cclnbgr 47812  StarGrcstgr 47945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28934  df-vtx 28943  df-stgr 47946
This theorem is referenced by:  isubgr3stgrlem6  47965
  Copyright terms: Public domain W3C validator