Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem4 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem4 48068
Description: Lemma 4 for isubgr3stgr 48074. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isubgr3stgrlem4 ((𝐴 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝐹   𝑧,𝑁   𝑧,𝑊   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝑈(𝑧)   𝐸(𝑧)   𝐺(𝑧)   𝑉(𝑧)

Proof of Theorem isubgr3stgrlem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 4684 . . . . . 6 (𝑧 = (𝐹𝐵) → {0, 𝑧} = {0, (𝐹𝐵)})
21eqeq2d 2742 . . . . 5 (𝑧 = (𝐹𝐵) → ((𝐹 “ {𝑋, 𝐵}) = {0, 𝑧} ↔ (𝐹 “ {𝑋, 𝐵}) = {0, (𝐹𝐵)}))
3 f1of 6763 . . . . . . . . 9 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶𝑊)
43adantr 480 . . . . . . . 8 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹:𝐶𝑊)
54adantr 480 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → 𝐹:𝐶𝑊)
6 simpr3 1197 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → 𝐵𝐶)
75, 6ffvelcdmd 7018 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝐵) ∈ 𝑊)
8 isubgr3stgr.w . . . . . . . . . 10 𝑊 = (Vtx‘𝑆)
9 isubgr3stgr.s . . . . . . . . . . 11 𝑆 = (StarGr‘𝑁)
109fveq2i 6825 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
11 isubgr3stgr.n . . . . . . . . . . 11 𝑁 ∈ ℕ0
12 stgrvtx 48053 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
1311, 12ax-mp 5 . . . . . . . . . 10 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
148, 10, 133eqtri 2758 . . . . . . . . 9 𝑊 = (0...𝑁)
1514eleq2i 2823 . . . . . . . 8 ((𝐹𝐵) ∈ 𝑊 ↔ (𝐹𝐵) ∈ (0...𝑁))
16 fz0sn0fz1 13545 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (0...𝑁) = ({0} ∪ (1...𝑁)))
1711, 16ax-mp 5 . . . . . . . . 9 (0...𝑁) = ({0} ∪ (1...𝑁))
1817eleq2i 2823 . . . . . . . 8 ((𝐹𝐵) ∈ (0...𝑁) ↔ (𝐹𝐵) ∈ ({0} ∪ (1...𝑁)))
19 elun 4100 . . . . . . . . 9 ((𝐹𝐵) ∈ ({0} ∪ (1...𝑁)) ↔ ((𝐹𝐵) ∈ {0} ∨ (𝐹𝐵) ∈ (1...𝑁)))
20 fvex 6835 . . . . . . . . . . 11 (𝐹𝐵) ∈ V
2120elsn 4588 . . . . . . . . . 10 ((𝐹𝐵) ∈ {0} ↔ (𝐹𝐵) = 0)
2221orbi1i 913 . . . . . . . . 9 (((𝐹𝐵) ∈ {0} ∨ (𝐹𝐵) ∈ (1...𝑁)) ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
2319, 22bitri 275 . . . . . . . 8 ((𝐹𝐵) ∈ ({0} ∪ (1...𝑁)) ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
2415, 18, 233bitri 297 . . . . . . 7 ((𝐹𝐵) ∈ 𝑊 ↔ ((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)))
25 eqeq2 2743 . . . . . . . . . . 11 ((𝐹𝑋) = 0 → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
2625adantl 481 . . . . . . . . . 10 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
2726adantr 480 . . . . . . . . 9 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐹𝑋) ↔ (𝐹𝐵) = 0))
28 f1of1 6762 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶1-1𝑊)
29 dff14a 7204 . . . . . . . . . . . . 13 (𝐹:𝐶1-1𝑊 ↔ (𝐹:𝐶𝑊 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
30 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → 𝑎 = 𝑋)
31 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → 𝑏 = 𝐵)
3230, 31neeq12d 2989 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝑎𝑏𝑋𝐵))
33 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
3433adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝐹𝑎) = (𝐹𝑋))
35 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
3635adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋𝑏 = 𝐵) → (𝐹𝑏) = (𝐹𝐵))
3734, 36neeq12d 2989 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝑋𝑏 = 𝐵) → ((𝐹𝑎) ≠ (𝐹𝑏) ↔ (𝐹𝑋) ≠ (𝐹𝐵)))
3832, 37imbi12d 344 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝑋𝑏 = 𝐵) → ((𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) ↔ (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
3938rspc2gv 3582 . . . . . . . . . . . . . . . 16 ((𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
40393adant1 1130 . . . . . . . . . . . . . . 15 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵))))
41 id 22 . . . . . . . . . . . . . . . . 17 ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → (𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)))
42 eqneqall 2939 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑋) = (𝐹𝐵) → ((𝐹𝑋) ≠ (𝐹𝐵) → (𝐹𝐵) ∈ (1...𝑁)))
4342eqcoms 2739 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐵) = (𝐹𝑋) → ((𝐹𝑋) ≠ (𝐹𝐵) → (𝐹𝐵) ∈ (1...𝑁)))
4443com12 32 . . . . . . . . . . . . . . . . 17 ((𝐹𝑋) ≠ (𝐹𝐵) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁)))
4541, 44syl6com 37 . . . . . . . . . . . . . . . 16 (𝑋𝐵 → ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
46453ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝑋𝐵 → (𝐹𝑋) ≠ (𝐹𝐵)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4740, 46syld 47 . . . . . . . . . . . . . 14 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4847adantld 490 . . . . . . . . . . . . 13 ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹:𝐶𝑊 ∧ ∀𝑎𝐶𝑏𝐶 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
4929, 48biimtrid 242 . . . . . . . . . . . 12 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (𝐹:𝐶1-1𝑊 → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5028, 49syl5com 31 . . . . . . . . . . 11 (𝐹:𝐶1-1-onto𝑊 → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5150adantr 480 . . . . . . . . . 10 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁))))
5251imp 406 . . . . . . . . 9 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = (𝐹𝑋) → (𝐹𝐵) ∈ (1...𝑁)))
5327, 52sylbird 260 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) = 0 → (𝐹𝐵) ∈ (1...𝑁)))
54 idd 24 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) ∈ (1...𝑁) → (𝐹𝐵) ∈ (1...𝑁)))
5553, 54jaod 859 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (((𝐹𝐵) = 0 ∨ (𝐹𝐵) ∈ (1...𝑁)) → (𝐹𝐵) ∈ (1...𝑁)))
5624, 55biimtrid 242 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ((𝐹𝐵) ∈ 𝑊 → (𝐹𝐵) ∈ (1...𝑁)))
577, 56mpd 15 . . . . 5 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝐵) ∈ (1...𝑁))
58 f1ofn 6764 . . . . . . . . . 10 (𝐹:𝐶1-1-onto𝑊𝐹 Fn 𝐶)
5958adantr 480 . . . . . . . . 9 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹 Fn 𝐶)
60 3simpc 1150 . . . . . . . . 9 ((𝑋𝐵𝑋𝐶𝐵𝐶) → (𝑋𝐶𝐵𝐶))
6159, 60anim12i 613 . . . . . . . 8 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 Fn 𝐶 ∧ (𝑋𝐶𝐵𝐶)))
62 3anass 1094 . . . . . . . 8 ((𝐹 Fn 𝐶𝑋𝐶𝐵𝐶) ↔ (𝐹 Fn 𝐶 ∧ (𝑋𝐶𝐵𝐶)))
6361, 62sylibr 234 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 Fn 𝐶𝑋𝐶𝐵𝐶))
64 fnimapr 6905 . . . . . . 7 ((𝐹 Fn 𝐶𝑋𝐶𝐵𝐶) → (𝐹 “ {𝑋, 𝐵}) = {(𝐹𝑋), (𝐹𝐵)})
6563, 64syl 17 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 “ {𝑋, 𝐵}) = {(𝐹𝑋), (𝐹𝐵)})
66 simpr 484 . . . . . . . 8 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → (𝐹𝑋) = 0)
6766adantr 480 . . . . . . 7 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹𝑋) = 0)
6867preq1d 4689 . . . . . 6 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → {(𝐹𝑋), (𝐹𝐵)} = {0, (𝐹𝐵)})
6965, 68eqtrd 2766 . . . . 5 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → (𝐹 “ {𝑋, 𝐵}) = {0, (𝐹𝐵)})
702, 57, 69rspcedvdw 3575 . . . 4 (((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑋𝐵𝑋𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧})
7170ex 412 . . 3 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝑋𝐵𝑋𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
72 neeq1 2990 . . . . 5 (𝐴 = 𝑋 → (𝐴𝐵𝑋𝐵))
73 eleq1 2819 . . . . 5 (𝐴 = 𝑋 → (𝐴𝐶𝑋𝐶))
7472, 733anbi12d 1439 . . . 4 (𝐴 = 𝑋 → ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶𝐵𝐶)))
75 preq1 4683 . . . . . . 7 (𝐴 = 𝑋 → {𝐴, 𝐵} = {𝑋, 𝐵})
7675imaeq2d 6008 . . . . . 6 (𝐴 = 𝑋 → (𝐹 “ {𝐴, 𝐵}) = (𝐹 “ {𝑋, 𝐵}))
7776eqeq1d 2733 . . . . 5 (𝐴 = 𝑋 → ((𝐹 “ {𝐴, 𝐵}) = {0, 𝑧} ↔ (𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
7877rexbidv 3156 . . . 4 (𝐴 = 𝑋 → (∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧}))
7974, 78imbi12d 344 . . 3 (𝐴 = 𝑋 → (((𝐴𝐵𝐴𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧}) ↔ ((𝑋𝐵𝑋𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑋, 𝐵}) = {0, 𝑧})))
8071, 79imbitrrid 246 . 2 (𝐴 = 𝑋 → ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})))
81803imp 1110 1 ((𝐴 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cun 3895  {csn 4573  {cpr 4575  cima 5617   Fn wfn 6476  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  0cn0 12381  ...cfz 13407  Vtxcvtx 28974  Edgcedg 29025   NeighbVtx cnbgr 29310   ClNeighbVtx cclnbgr 47917  StarGrcstgr 48050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28967  df-vtx 28976  df-stgr 48051
This theorem is referenced by:  isubgr3stgrlem6  48070
  Copyright terms: Public domain W3C validator