![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem9 | Structured version Visualization version GIF version |
Description: Lemma 9 for isubgr3stgr 47877. (Contributed by AV, 29-Sep-2025.) |
Ref | Expression |
---|---|
isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
isubgr3stgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
isubgr3stgr.i | ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) |
isubgr3stgr.h | ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) |
Ref | Expression |
---|---|
isubgr3stgrlem9 | ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isubgr3stgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isubgr3stgr.u | . . 3 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
3 | isubgr3stgr.c | . . 3 ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) | |
4 | isubgr3stgr.n | . . 3 ⊢ 𝑁 ∈ ℕ0 | |
5 | isubgr3stgr.s | . . 3 ⊢ 𝑆 = (StarGr‘𝑁) | |
6 | isubgr3stgr.w | . . 3 ⊢ 𝑊 = (Vtx‘𝑆) | |
7 | isubgr3stgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
8 | isubgr3stgr.i | . . 3 ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) | |
9 | isubgr3stgr.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isubgr3stgrlem8 47875 | . 2 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁))) |
11 | f1of 6848 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝑊 → 𝐹:𝐶⟶𝑊) | |
12 | 11 | ad2antrl 728 | . . . 4 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐹:𝐶⟶𝑊) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isubgr3stgrlem5 47872 | . . . . 5 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑒 ∈ 𝐼) → (𝐻‘𝑒) = (𝐹 “ 𝑒)) |
14 | 13 | eqcomd 2740 | . . . 4 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑒 ∈ 𝐼) → (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
15 | 12, 14 | sylan 580 | . . 3 ⊢ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ 𝑒 ∈ 𝐼) → (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
16 | 15 | ralrimiva 3143 | . 2 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
17 | 10, 16 | jca 511 | 1 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∉ wnel 3043 ∀wral 3058 {cpr 4632 ↦ cmpt 5230 “ cima 5691 ⟶wf 6558 –1-1-onto→wf1o 6561 ‘cfv 6562 (class class class)co 7430 0cc0 11152 ℕ0cn0 12523 ♯chash 14365 Vtxcvtx 29027 Edgcedg 29078 USGraphcusgr 29180 NeighbVtx cnbgr 29363 ClNeighbVtx cclnbgr 47742 ISubGr cisubgr 47783 StarGrcstgr 47853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-xnn0 12597 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-hash 14366 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-edgf 29018 df-vtx 29029 df-iedg 29030 df-edg 29079 df-uhgr 29089 df-upgr 29113 df-umgr 29114 df-uspgr 29181 df-usgr 29182 df-nbgr 29364 df-clnbgr 47743 df-isubgr 47784 df-stgr 47854 |
This theorem is referenced by: isubgr3stgr 47877 |
Copyright terms: Public domain | W3C validator |