| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma 9 for isubgr3stgr 48074. (Contributed by AV, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
| isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
| isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
| isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
| isubgr3stgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgr3stgr.i | ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) |
| isubgr3stgr.h | ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) |
| Ref | Expression |
|---|---|
| isubgr3stgrlem9 | ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgr3stgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isubgr3stgr.u | . . 3 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 3 | isubgr3stgr.c | . . 3 ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) | |
| 4 | isubgr3stgr.n | . . 3 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | isubgr3stgr.s | . . 3 ⊢ 𝑆 = (StarGr‘𝑁) | |
| 6 | isubgr3stgr.w | . . 3 ⊢ 𝑊 = (Vtx‘𝑆) | |
| 7 | isubgr3stgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 8 | isubgr3stgr.i | . . 3 ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) | |
| 9 | isubgr3stgr.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isubgr3stgrlem8 48072 | . 2 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁))) |
| 11 | f1of 6763 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝑊 → 𝐹:𝐶⟶𝑊) | |
| 12 | 11 | ad2antrl 728 | . . . 4 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐹:𝐶⟶𝑊) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isubgr3stgrlem5 48069 | . . . . 5 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑒 ∈ 𝐼) → (𝐻‘𝑒) = (𝐹 “ 𝑒)) |
| 14 | 13 | eqcomd 2737 | . . . 4 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑒 ∈ 𝐼) → (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 15 | 12, 14 | sylan 580 | . . 3 ⊢ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ 𝑒 ∈ 𝐼) → (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 16 | 15 | ralrimiva 3124 | . 2 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 17 | 10, 16 | jca 511 | 1 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∀wral 3047 {cpr 4575 ↦ cmpt 5170 “ cima 5617 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℕ0cn0 12381 ♯chash 14237 Vtxcvtx 28974 Edgcedg 29025 USGraphcusgr 29127 NeighbVtx cnbgr 29310 ClNeighbVtx cclnbgr 47917 ISubGr cisubgr 47959 StarGrcstgr 48050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28967 df-vtx 28976 df-iedg 28977 df-edg 29026 df-uhgr 29036 df-upgr 29060 df-umgr 29061 df-uspgr 29128 df-usgr 29129 df-nbgr 29311 df-clnbgr 47918 df-isubgr 47960 df-stgr 48051 |
| This theorem is referenced by: isubgr3stgr 48074 |
| Copyright terms: Public domain | W3C validator |