| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma 9 for isubgr3stgr 47935. (Contributed by AV, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
| isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
| isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
| isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
| isubgr3stgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgr3stgr.i | ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) |
| isubgr3stgr.h | ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) |
| Ref | Expression |
|---|---|
| isubgr3stgrlem9 | ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgr3stgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isubgr3stgr.u | . . 3 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 3 | isubgr3stgr.c | . . 3 ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) | |
| 4 | isubgr3stgr.n | . . 3 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | isubgr3stgr.s | . . 3 ⊢ 𝑆 = (StarGr‘𝑁) | |
| 6 | isubgr3stgr.w | . . 3 ⊢ 𝑊 = (Vtx‘𝑆) | |
| 7 | isubgr3stgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 8 | isubgr3stgr.i | . . 3 ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) | |
| 9 | isubgr3stgr.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isubgr3stgrlem8 47933 | . 2 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁))) |
| 11 | f1of 6817 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝑊 → 𝐹:𝐶⟶𝑊) | |
| 12 | 11 | ad2antrl 728 | . . . 4 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐹:𝐶⟶𝑊) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isubgr3stgrlem5 47930 | . . . . 5 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑒 ∈ 𝐼) → (𝐻‘𝑒) = (𝐹 “ 𝑒)) |
| 14 | 13 | eqcomd 2741 | . . . 4 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑒 ∈ 𝐼) → (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 15 | 12, 14 | sylan 580 | . . 3 ⊢ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ 𝑒 ∈ 𝐼) → (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 16 | 15 | ralrimiva 3132 | . 2 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 17 | 10, 16 | jca 511 | 1 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∉ wnel 3036 ∀wral 3051 {cpr 4603 ↦ cmpt 5201 “ cima 5657 ⟶wf 6526 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ℕ0cn0 12499 ♯chash 14346 Vtxcvtx 28921 Edgcedg 28972 USGraphcusgr 29074 NeighbVtx cnbgr 29257 ClNeighbVtx cclnbgr 47780 ISubGr cisubgr 47821 StarGrcstgr 47911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-hash 14347 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-edgf 28914 df-vtx 28923 df-iedg 28924 df-edg 28973 df-uhgr 28983 df-upgr 29007 df-umgr 29008 df-uspgr 29075 df-usgr 29076 df-nbgr 29258 df-clnbgr 47781 df-isubgr 47822 df-stgr 47912 |
| This theorem is referenced by: isubgr3stgr 47935 |
| Copyright terms: Public domain | W3C validator |