| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgr3stgrlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma 9 for isubgr3stgr 47969. (Contributed by AV, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| isubgr3stgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isubgr3stgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| isubgr3stgr.c | ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
| isubgr3stgr.n | ⊢ 𝑁 ∈ ℕ0 |
| isubgr3stgr.s | ⊢ 𝑆 = (StarGr‘𝑁) |
| isubgr3stgr.w | ⊢ 𝑊 = (Vtx‘𝑆) |
| isubgr3stgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
| isubgr3stgr.i | ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) |
| isubgr3stgr.h | ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) |
| Ref | Expression |
|---|---|
| isubgr3stgrlem9 | ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgr3stgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isubgr3stgr.u | . . 3 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 3 | isubgr3stgr.c | . . 3 ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) | |
| 4 | isubgr3stgr.n | . . 3 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | isubgr3stgr.s | . . 3 ⊢ 𝑆 = (StarGr‘𝑁) | |
| 6 | isubgr3stgr.w | . . 3 ⊢ 𝑊 = (Vtx‘𝑆) | |
| 7 | isubgr3stgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 8 | isubgr3stgr.i | . . 3 ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) | |
| 9 | isubgr3stgr.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isubgr3stgrlem8 47967 | . 2 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁))) |
| 11 | f1of 6764 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝑊 → 𝐹:𝐶⟶𝑊) | |
| 12 | 11 | ad2antrl 728 | . . . 4 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐹:𝐶⟶𝑊) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isubgr3stgrlem5 47964 | . . . . 5 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑒 ∈ 𝐼) → (𝐻‘𝑒) = (𝐹 “ 𝑒)) |
| 14 | 13 | eqcomd 2735 | . . . 4 ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑒 ∈ 𝐼) → (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 15 | 12, 14 | sylan 580 | . . 3 ⊢ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ 𝑒 ∈ 𝐼) → (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 16 | 15 | ralrimiva 3121 | . 2 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒)) |
| 17 | 10, 16 | jca 511 | 1 ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 {cpr 4579 ↦ cmpt 5173 “ cima 5622 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 0cc0 11009 ℕ0cn0 12384 ♯chash 14237 Vtxcvtx 28941 Edgcedg 28992 USGraphcusgr 29094 NeighbVtx cnbgr 29277 ClNeighbVtx cclnbgr 47812 ISubGr cisubgr 47854 StarGrcstgr 47945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28934 df-vtx 28943 df-iedg 28944 df-edg 28993 df-uhgr 29003 df-upgr 29027 df-umgr 29028 df-uspgr 29095 df-usgr 29096 df-nbgr 29278 df-clnbgr 47813 df-isubgr 47855 df-stgr 47946 |
| This theorem is referenced by: isubgr3stgr 47969 |
| Copyright terms: Public domain | W3C validator |