![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fexd | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fexd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
fexd | ⊢ (𝜑 → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fexd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fexd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | fex 7263 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: mptcnfimad 8027 fidmfisupp 9442 fdmfisuppfi 9443 fsuppco2 9472 fsuppcor 9473 ixpiunwdom 9659 cnfcom3clem 9774 fin23lem32 10413 hasheqf1od 14402 hashf1lem1 14504 fz1isolem 14510 ramval 17055 imasval 17571 imasle 17583 pwsco1mhm 18867 efgtf 19764 gsumval3a 19945 gsumval3lem1 19947 gsumval3lem2 19948 gsumval3 19949 gsumzres 19951 gsumzf1o 19954 gsumzaddlem 19963 gsumzadd 19964 gsumzmhm 19979 gsumzoppg 19986 gsumpt 20004 gsum2dlem2 20013 prdslmodd 20990 dsmmsubg 21786 dsmmlss 21787 islindf2 21857 f1lindf 21865 islindf4 21881 gsumply1subr 22256 txcn 23655 prdstps 23658 qtopval2 23725 fmval 23972 tsmsres 24173 tsmsadd 24176 jensen 27050 pwrssmgc 32973 gsumpart 33038 ply1degltdimlem 33635 ofcfval4 34069 omsfval 34259 omssubadd 34265 carsgval 34268 sseqval 34353 hgt750lemg 34631 filnetlem4 36347 bj-finsumval0 37251 isrngod 37858 isgrpda 37915 iscringd 37958 sticksstones8 42110 limsupre 45562 limsupval3 45613 limsuppnfdlem 45622 limsupvaluz 45629 limsuppnflem 45631 limsupre2lem 45645 climuzlem 45664 climisp 45667 climxrrelem 45670 climxrre 45671 liminfval5 45686 limsupgtlem 45698 liminfvalxr 45704 liminflelimsupuz 45706 liminfgelimsupuz 45709 liminflimsupclim 45728 liminflbuz2 45736 xlimclim2lem 45760 climxlim2 45767 fourierdlem71 46098 fourierdlem80 46107 sge0val 46287 sge0f1o 46303 isomennd 46452 nsssmfmbflem 46699 isuspgrim 47759 itcovalendof 48403 |
Copyright terms: Public domain | W3C validator |