![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fexd | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fexd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
fexd | ⊢ (𝜑 → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fexd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fexd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | fex 7228 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
4 | 1, 2, 3 | syl2anc 585 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 ⟶wf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 |
This theorem is referenced by: fidmfisupp 9371 fdmfisuppfi 9372 fsuppco2 9398 fsuppcor 9399 ixpiunwdom 9585 cnfcom3clem 9700 fin23lem32 10339 hasheqf1od 14313 hashf1lem1 14415 hashf1lem1OLD 14416 fz1isolem 14422 ramval 16941 imasval 17457 imasle 17469 pwsco1mhm 18713 efgtf 19590 gsumval3a 19771 gsumval3lem1 19773 gsumval3lem2 19774 gsumval3 19775 gsumzres 19777 gsumzf1o 19780 gsumzaddlem 19789 gsumzadd 19790 gsumzmhm 19805 gsumzoppg 19812 gsumpt 19830 gsum2dlem2 19839 prdslmodd 20580 dsmmsubg 21298 dsmmlss 21299 islindf2 21369 f1lindf 21377 islindf4 21393 gsumply1subr 21756 txcn 23130 prdstps 23133 qtopval2 23200 fmval 23447 tsmsres 23648 tsmsadd 23651 jensen 26493 pwrssmgc 32170 gsumpart 32207 ply1degltdimlem 32707 ofcfval4 33103 omsfval 33293 omssubadd 33299 carsgval 33302 sseqval 33387 hgt750lemg 33666 filnetlem4 35266 bj-finsumval0 36166 isrngod 36766 isgrpda 36823 iscringd 36866 sticksstones8 40969 limsupre 44357 limsupval3 44408 limsuppnfdlem 44417 limsupvaluz 44424 limsuppnflem 44426 limsupre2lem 44440 climuzlem 44459 climisp 44462 climxrrelem 44465 climxrre 44466 liminfval5 44481 limsupgtlem 44493 liminfvalxr 44499 liminflelimsupuz 44501 liminfgelimsupuz 44504 liminflimsupclim 44523 liminflbuz2 44531 xlimclim2lem 44555 climxlim2 44562 fourierdlem71 44893 fourierdlem80 44902 sge0val 45082 sge0f1o 45098 isomennd 45247 nsssmfmbflem 45494 itcovalendof 47355 |
Copyright terms: Public domain | W3C validator |