![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fexd | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fexd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
fexd | ⊢ (𝜑 → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fexd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fexd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | fex 7224 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3474 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 |
This theorem is referenced by: fidmfisupp 9367 fdmfisuppfi 9368 fsuppco2 9394 fsuppcor 9395 ixpiunwdom 9581 cnfcom3clem 9696 fin23lem32 10335 hasheqf1od 14309 hashf1lem1 14411 hashf1lem1OLD 14412 fz1isolem 14418 ramval 16937 imasval 17453 imasle 17465 pwsco1mhm 18709 efgtf 19584 gsumval3a 19765 gsumval3lem1 19767 gsumval3lem2 19768 gsumval3 19769 gsumzres 19771 gsumzf1o 19774 gsumzaddlem 19783 gsumzadd 19784 gsumzmhm 19799 gsumzoppg 19806 gsumpt 19824 gsum2dlem2 19833 prdslmodd 20572 dsmmsubg 21289 dsmmlss 21290 islindf2 21360 f1lindf 21368 islindf4 21384 gsumply1subr 21747 txcn 23121 prdstps 23124 qtopval2 23191 fmval 23438 tsmsres 23639 tsmsadd 23642 jensen 26482 pwrssmgc 32157 gsumpart 32194 ply1degltdimlem 32695 ofcfval4 33091 omsfval 33281 omssubadd 33287 carsgval 33290 sseqval 33375 hgt750lemg 33654 filnetlem4 35254 bj-finsumval0 36154 isrngod 36754 isgrpda 36811 iscringd 36854 sticksstones8 40957 limsupre 44343 limsupval3 44394 limsuppnfdlem 44403 limsupvaluz 44410 limsuppnflem 44412 limsupre2lem 44426 climuzlem 44445 climisp 44448 climxrrelem 44451 climxrre 44452 liminfval5 44467 limsupgtlem 44479 liminfvalxr 44485 liminflelimsupuz 44487 liminfgelimsupuz 44490 liminflimsupclim 44509 liminflbuz2 44517 xlimclim2lem 44541 climxlim2 44548 fourierdlem71 44879 fourierdlem80 44888 sge0val 45068 sge0f1o 45084 isomennd 45233 nsssmfmbflem 45480 itcovalendof 47308 |
Copyright terms: Public domain | W3C validator |