Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fexd | Structured version Visualization version GIF version |
Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fexd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
fexd | ⊢ (𝜑 → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fexd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fexd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | fex 7084 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐹 ∈ V) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: fdmfisuppfi 9067 fsuppco2 9092 fsuppcor 9093 ixpiunwdom 9279 cnfcom3clem 9393 fin23lem32 10031 hasheqf1od 13996 hashf1lem1 14096 hashf1lem1OLD 14097 fz1isolem 14103 ramval 16637 imasval 17139 imasle 17151 pwsco1mhm 18385 efgtf 19243 gsumval3a 19419 gsumval3lem1 19421 gsumval3lem2 19422 gsumval3 19423 gsumzres 19425 gsumzf1o 19428 gsumzaddlem 19437 gsumzadd 19438 gsumzmhm 19453 gsumzoppg 19460 gsumpt 19478 gsum2dlem2 19487 prdslmodd 20146 dsmmsubg 20860 dsmmlss 20861 islindf2 20931 f1lindf 20939 islindf4 20955 gsumply1subr 21315 txcn 22685 prdstps 22688 qtopval2 22755 fmval 23002 tsmsres 23203 tsmsadd 23206 jensen 26043 pwrssmgc 31180 gsumpart 31217 ofcfval4 31973 omsfval 32161 omssubadd 32167 carsgval 32170 sseqval 32255 hgt750lemg 32534 filnetlem4 34497 bj-finsumval0 35383 isrngod 35983 isgrpda 36040 iscringd 36083 sticksstones8 40037 fidmfisupp 42628 limsupre 43072 limsupval3 43123 limsuppnfdlem 43132 limsupvaluz 43139 limsuppnflem 43141 limsupre2lem 43155 climuzlem 43174 climisp 43177 climxrrelem 43180 climxrre 43181 liminfval5 43196 limsupgtlem 43208 liminfvalxr 43214 liminflelimsupuz 43216 liminfgelimsupuz 43219 liminflimsupclim 43238 liminflbuz2 43246 xlimclim2lem 43270 climxlim2 43277 fourierdlem71 43608 fourierdlem80 43617 sge0val 43794 sge0f1o 43810 isomennd 43959 nsssmfmbflem 44200 itcovalendof 45903 |
Copyright terms: Public domain | W3C validator |