MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fixufil Structured version   Visualization version   GIF version

Theorem fixufil 23809
Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009.) (Revised by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 29-Jul-2015.)
Assertion
Ref Expression
fixufil ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑉

Proof of Theorem fixufil
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uffix 23808 . . . 4 ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
21simprd 495 . . 3 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
31simpld 494 . . . 4 ((𝑋𝑉𝐴𝑋) → {{𝐴}} ∈ (fBas‘𝑋))
4 fgcl 23765 . . . 4 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
53, 4syl 17 . . 3 ((𝑋𝑉𝐴𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
62, 5eqeltrd 2828 . 2 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋))
7 undif2 4440 . . . . . . . . . 10 (𝑦 ∪ (𝑋𝑦)) = (𝑦𝑋)
8 elpwi 4570 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
9 ssequn1 4149 . . . . . . . . . . 11 (𝑦𝑋 ↔ (𝑦𝑋) = 𝑋)
108, 9sylib 218 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋 → (𝑦𝑋) = 𝑋)
117, 10eqtr2id 2777 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑋 = (𝑦 ∪ (𝑋𝑦)))
1211eleq2d 2814 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋 → (𝐴𝑋𝐴 ∈ (𝑦 ∪ (𝑋𝑦))))
1312biimpac 478 . . . . . . 7 ((𝐴𝑋𝑦 ∈ 𝒫 𝑋) → 𝐴 ∈ (𝑦 ∪ (𝑋𝑦)))
14 elun 4116 . . . . . . 7 (𝐴 ∈ (𝑦 ∪ (𝑋𝑦)) ↔ (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
1513, 14sylib 218 . . . . . 6 ((𝐴𝑋𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
1615adantll 714 . . . . 5 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
17 ibar 528 . . . . . . 7 (𝑦 ∈ 𝒫 𝑋 → (𝐴𝑦 ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
1817adantl 481 . . . . . 6 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦 ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
19 difss 4099 . . . . . . . . 9 (𝑋𝑦) ⊆ 𝑋
20 elpw2g 5288 . . . . . . . . 9 (𝑋𝑉 → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
2119, 20mpbiri 258 . . . . . . . 8 (𝑋𝑉 → (𝑋𝑦) ∈ 𝒫 𝑋)
2221ad2antrr 726 . . . . . . 7 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑋𝑦) ∈ 𝒫 𝑋)
2322biantrurd 532 . . . . . 6 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴 ∈ (𝑋𝑦) ↔ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
2418, 23orbi12d 918 . . . . 5 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝐴𝑦𝐴 ∈ (𝑋𝑦)) ↔ ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦)))))
2516, 24mpbid 232 . . . 4 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
2625ralrimiva 3125 . . 3 ((𝑋𝑉𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
27 eleq2 2817 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2827elrab 3659 . . . . 5 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦))
29 eleq2 2817 . . . . . 6 (𝑥 = (𝑋𝑦) → (𝐴𝑥𝐴 ∈ (𝑋𝑦)))
3029elrab 3659 . . . . 5 ((𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦)))
3128, 30orbi12i 914 . . . 4 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) ↔ ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
3231ralbii 3075 . . 3 (∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) ↔ ∀𝑦 ∈ 𝒫 𝑋((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
3326, 32sylibr 234 . 2 ((𝑋𝑉𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
34 isufil 23790 . 2 ({𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋) ↔ ({𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})))
356, 33, 34sylanbrc 583 1 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cdif 3911  cun 3912  wss 3914  𝒫 cpw 4563  {csn 4589  cfv 6511  (class class class)co 7387  fBascfbas 21252  filGencfg 21253  Filcfil 23732  UFilcufil 23786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fbas 21261  df-fg 21262  df-fil 23733  df-ufil 23788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator