Step | Hyp | Ref
| Expression |
1 | | uffix 22626 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}}))) |
2 | 1 | simprd 499 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} = (𝑋filGen{{𝐴}})) |
3 | 1 | simpld 498 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {{𝐴}} ∈ (fBas‘𝑋)) |
4 | | fgcl 22583 |
. . . 4
⊢ ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋)) |
5 | 3, 4 | syl 17 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋)) |
6 | 2, 5 | eqeltrd 2852 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (Fil‘𝑋)) |
7 | | undif2 4376 |
. . . . . . . . . 10
⊢ (𝑦 ∪ (𝑋 ∖ 𝑦)) = (𝑦 ∪ 𝑋) |
8 | | elpwi 4506 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) |
9 | | ssequn1 4087 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝑋 ↔ (𝑦 ∪ 𝑋) = 𝑋) |
10 | 8, 9 | sylib 221 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 𝑋 → (𝑦 ∪ 𝑋) = 𝑋) |
11 | 7, 10 | syl5req 2806 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑋 = (𝑦 ∪ (𝑋 ∖ 𝑦))) |
12 | 11 | eleq2d 2837 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝒫 𝑋 → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝑦 ∪ (𝑋 ∖ 𝑦)))) |
13 | 12 | biimpac 482 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝒫 𝑋) → 𝐴 ∈ (𝑦 ∪ (𝑋 ∖ 𝑦))) |
14 | | elun 4056 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑦 ∪ (𝑋 ∖ 𝑦)) ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 ∈ (𝑋 ∖ 𝑦))) |
15 | 13, 14 | sylib 221 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴 ∈ 𝑦 ∨ 𝐴 ∈ (𝑋 ∖ 𝑦))) |
16 | 15 | adantll 713 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴 ∈ 𝑦 ∨ 𝐴 ∈ (𝑋 ∖ 𝑦))) |
17 | | ibar 532 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 𝑋 → (𝐴 ∈ 𝑦 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦))) |
18 | 17 | adantl 485 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴 ∈ 𝑦 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦))) |
19 | | difss 4039 |
. . . . . . . . 9
⊢ (𝑋 ∖ 𝑦) ⊆ 𝑋 |
20 | | elpw2g 5217 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑉 → ((𝑋 ∖ 𝑦) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑦) ⊆ 𝑋)) |
21 | 19, 20 | mpbiri 261 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∖ 𝑦) ∈ 𝒫 𝑋) |
22 | 21 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑋 ∖ 𝑦) ∈ 𝒫 𝑋) |
23 | 22 | biantrurd 536 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴 ∈ (𝑋 ∖ 𝑦) ↔ ((𝑋 ∖ 𝑦) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ (𝑋 ∖ 𝑦)))) |
24 | 18, 23 | orbi12d 916 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝐴 ∈ 𝑦 ∨ 𝐴 ∈ (𝑋 ∖ 𝑦)) ↔ ((𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦) ∨ ((𝑋 ∖ 𝑦) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ (𝑋 ∖ 𝑦))))) |
25 | 16, 24 | mpbid 235 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦) ∨ ((𝑋 ∖ 𝑦) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ (𝑋 ∖ 𝑦)))) |
26 | 25 | ralrimiva 3113 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → ∀𝑦 ∈ 𝒫 𝑋((𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦) ∨ ((𝑋 ∖ 𝑦) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ (𝑋 ∖ 𝑦)))) |
27 | | eleq2 2840 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
28 | 27 | elrab 3604 |
. . . . 5
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦)) |
29 | | eleq2 2840 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∖ 𝑦) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ (𝑋 ∖ 𝑦))) |
30 | 29 | elrab 3604 |
. . . . 5
⊢ ((𝑋 ∖ 𝑦) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ ((𝑋 ∖ 𝑦) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ (𝑋 ∖ 𝑦))) |
31 | 28, 30 | orbi12i 912 |
. . . 4
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∨ (𝑋 ∖ 𝑦) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) ↔ ((𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦) ∨ ((𝑋 ∖ 𝑦) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ (𝑋 ∖ 𝑦)))) |
32 | 31 | ralbii 3097 |
. . 3
⊢
(∀𝑦 ∈
𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∨ (𝑋 ∖ 𝑦) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) ↔ ∀𝑦 ∈ 𝒫 𝑋((𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦) ∨ ((𝑋 ∖ 𝑦) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ (𝑋 ∖ 𝑦)))) |
33 | 26, 32 | sylibr 237 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → ∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∨ (𝑋 ∖ 𝑦) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) |
34 | | isufil 22608 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (UFil‘𝑋) ↔ ({𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (Fil‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∨ (𝑋 ∖ 𝑦) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}))) |
35 | 6, 33, 34 | sylanbrc 586 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ∈ (UFil‘𝑋)) |