MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fixufil Structured version   Visualization version   GIF version

Theorem fixufil 23073
Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009.) (Revised by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 29-Jul-2015.)
Assertion
Ref Expression
fixufil ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑉

Proof of Theorem fixufil
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uffix 23072 . . . 4 ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
21simprd 496 . . 3 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
31simpld 495 . . . 4 ((𝑋𝑉𝐴𝑋) → {{𝐴}} ∈ (fBas‘𝑋))
4 fgcl 23029 . . . 4 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
53, 4syl 17 . . 3 ((𝑋𝑉𝐴𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
62, 5eqeltrd 2839 . 2 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋))
7 undif2 4410 . . . . . . . . . 10 (𝑦 ∪ (𝑋𝑦)) = (𝑦𝑋)
8 elpwi 4542 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
9 ssequn1 4114 . . . . . . . . . . 11 (𝑦𝑋 ↔ (𝑦𝑋) = 𝑋)
108, 9sylib 217 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋 → (𝑦𝑋) = 𝑋)
117, 10eqtr2id 2791 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑋 = (𝑦 ∪ (𝑋𝑦)))
1211eleq2d 2824 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋 → (𝐴𝑋𝐴 ∈ (𝑦 ∪ (𝑋𝑦))))
1312biimpac 479 . . . . . . 7 ((𝐴𝑋𝑦 ∈ 𝒫 𝑋) → 𝐴 ∈ (𝑦 ∪ (𝑋𝑦)))
14 elun 4083 . . . . . . 7 (𝐴 ∈ (𝑦 ∪ (𝑋𝑦)) ↔ (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
1513, 14sylib 217 . . . . . 6 ((𝐴𝑋𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
1615adantll 711 . . . . 5 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
17 ibar 529 . . . . . . 7 (𝑦 ∈ 𝒫 𝑋 → (𝐴𝑦 ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
1817adantl 482 . . . . . 6 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦 ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
19 difss 4066 . . . . . . . . 9 (𝑋𝑦) ⊆ 𝑋
20 elpw2g 5268 . . . . . . . . 9 (𝑋𝑉 → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
2119, 20mpbiri 257 . . . . . . . 8 (𝑋𝑉 → (𝑋𝑦) ∈ 𝒫 𝑋)
2221ad2antrr 723 . . . . . . 7 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑋𝑦) ∈ 𝒫 𝑋)
2322biantrurd 533 . . . . . 6 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴 ∈ (𝑋𝑦) ↔ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
2418, 23orbi12d 916 . . . . 5 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝐴𝑦𝐴 ∈ (𝑋𝑦)) ↔ ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦)))))
2516, 24mpbid 231 . . . 4 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
2625ralrimiva 3103 . . 3 ((𝑋𝑉𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
27 eleq2 2827 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2827elrab 3624 . . . . 5 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦))
29 eleq2 2827 . . . . . 6 (𝑥 = (𝑋𝑦) → (𝐴𝑥𝐴 ∈ (𝑋𝑦)))
3029elrab 3624 . . . . 5 ((𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦)))
3128, 30orbi12i 912 . . . 4 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) ↔ ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
3231ralbii 3092 . . 3 (∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) ↔ ∀𝑦 ∈ 𝒫 𝑋((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
3326, 32sylibr 233 . 2 ((𝑋𝑉𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
34 isufil 23054 . 2 ({𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋) ↔ ({𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})))
356, 33, 34sylanbrc 583 1 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  cun 3885  wss 3887  𝒫 cpw 4533  {csn 4561  cfv 6433  (class class class)co 7275  fBascfbas 20585  filGencfg 20586  Filcfil 22996  UFilcufil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fbas 20594  df-fg 20595  df-fil 22997  df-ufil 23052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator