| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiuninc | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meaiuninc.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiuninc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiuninc.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiuninc.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiuninc.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
| meaiuninc.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
| meaiuninc.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiuninc | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiuninc.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 2 | 2fveq3 6827 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) | |
| 3 | 2 | cbvmptv 5196 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 4 | 1, 3 | eqtri 2752 | . . 3 ⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚)))) |
| 6 | meaiuninc.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 7 | meaiuninc.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 8 | meaiuninc.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 9 | meaiuninc.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 10 | meaiuninc.i | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
| 11 | meaiuninc.x | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
| 12 | 4, 1 | eqtr3i 2754 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| 13 | fveq2 6822 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝐸‘𝑘) = (𝐸‘𝑖)) | |
| 14 | 13 | cbviunv 4989 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘) = ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) |
| 15 | 14 | difeq2i 4074 | . . . . 5 ⊢ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘)) = ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) |
| 16 | 15 | mpteq2i 5188 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) |
| 17 | fveq2 6822 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐸‘𝑚) = (𝐸‘𝑛)) | |
| 18 | oveq2 7357 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝑁..^𝑚) = (𝑁..^𝑛)) | |
| 19 | 18 | iuneq1d 4969 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) |
| 20 | 17, 19 | difeq12d 4078 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
| 21 | 20 | cbvmptv 5196 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
| 22 | 16, 21 | eqtri 2752 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
| 23 | 6, 7, 8, 9, 10, 11, 12, 22 | meaiuninclem 46471 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| 24 | 5, 23 | eqbrtrd 5114 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∖ cdif 3900 ⊆ wss 3903 ∪ ciun 4941 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 ..^cfzo 13557 ⇝ cli 15391 Meascmea 46440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-xadd 13015 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-salg 46300 df-sumge0 46354 df-mea 46441 |
| This theorem is referenced by: meaiuninc2 46473 meaiunincf 46474 |
| Copyright terms: Public domain | W3C validator |