Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiuninc | Structured version Visualization version GIF version |
Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meaiuninc.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiuninc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiuninc.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiuninc.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiuninc.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
meaiuninc.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
meaiuninc.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiuninc | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiuninc.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
2 | 2fveq3 6779 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) | |
3 | 2 | cbvmptv 5187 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
4 | 1, 3 | eqtri 2766 | . . 3 ⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚)))) |
6 | meaiuninc.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
7 | meaiuninc.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
8 | meaiuninc.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
9 | meaiuninc.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
10 | meaiuninc.i | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
11 | meaiuninc.x | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
12 | 4, 1 | eqtr3i 2768 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
13 | fveq2 6774 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝐸‘𝑘) = (𝐸‘𝑖)) | |
14 | 13 | cbviunv 4970 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘) = ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) |
15 | 14 | difeq2i 4054 | . . . . 5 ⊢ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘)) = ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) |
16 | 15 | mpteq2i 5179 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) |
17 | fveq2 6774 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐸‘𝑚) = (𝐸‘𝑛)) | |
18 | oveq2 7283 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝑁..^𝑚) = (𝑁..^𝑛)) | |
19 | 18 | iuneq1d 4951 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) |
20 | 17, 19 | difeq12d 4058 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
21 | 20 | cbvmptv 5187 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
22 | 16, 21 | eqtri 2766 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
23 | 6, 7, 8, 9, 10, 11, 12, 22 | meaiuninclem 44018 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
24 | 5, 23 | eqbrtrd 5096 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∖ cdif 3884 ⊆ wss 3887 ∪ ciun 4924 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 ≤ cle 11010 ℤcz 12319 ℤ≥cuz 12582 ..^cfzo 13382 ⇝ cli 15193 Meascmea 43987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-xadd 12849 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-salg 43850 df-sumge0 43901 df-mea 43988 |
This theorem is referenced by: meaiuninc2 44020 meaiunincf 44021 |
Copyright terms: Public domain | W3C validator |