| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiuninc | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meaiuninc.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiuninc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiuninc.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiuninc.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiuninc.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
| meaiuninc.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
| meaiuninc.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiuninc | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiuninc.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 2 | 2fveq3 6863 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) | |
| 3 | 2 | cbvmptv 5211 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 4 | 1, 3 | eqtri 2752 | . . 3 ⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚)))) |
| 6 | meaiuninc.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 7 | meaiuninc.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 8 | meaiuninc.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 9 | meaiuninc.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 10 | meaiuninc.i | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
| 11 | meaiuninc.x | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
| 12 | 4, 1 | eqtr3i 2754 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| 13 | fveq2 6858 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝐸‘𝑘) = (𝐸‘𝑖)) | |
| 14 | 13 | cbviunv 5004 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘) = ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) |
| 15 | 14 | difeq2i 4086 | . . . . 5 ⊢ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘)) = ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) |
| 16 | 15 | mpteq2i 5203 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) |
| 17 | fveq2 6858 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐸‘𝑚) = (𝐸‘𝑛)) | |
| 18 | oveq2 7395 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝑁..^𝑚) = (𝑁..^𝑛)) | |
| 19 | 18 | iuneq1d 4983 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) |
| 20 | 17, 19 | difeq12d 4090 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
| 21 | 20 | cbvmptv 5211 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
| 22 | 16, 21 | eqtri 2752 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
| 23 | 6, 7, 8, 9, 10, 11, 12, 22 | meaiuninclem 46478 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| 24 | 5, 23 | eqbrtrd 5129 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∖ cdif 3911 ⊆ wss 3914 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 ..^cfzo 13615 ⇝ cli 15450 Meascmea 46447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-xadd 13073 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-salg 46307 df-sumge0 46361 df-mea 46448 |
| This theorem is referenced by: meaiuninc2 46480 meaiunincf 46481 |
| Copyright terms: Public domain | W3C validator |