![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiuninc | Structured version Visualization version GIF version |
Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meaiuninc.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiuninc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiuninc.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiuninc.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiuninc.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
meaiuninc.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
meaiuninc.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiuninc | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiuninc.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
2 | 2fveq3 6896 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) | |
3 | 2 | cbvmptv 5261 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
4 | 1, 3 | eqtri 2760 | . . 3 ⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚)))) |
6 | meaiuninc.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
7 | meaiuninc.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
8 | meaiuninc.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
9 | meaiuninc.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
10 | meaiuninc.i | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
11 | meaiuninc.x | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
12 | 4, 1 | eqtr3i 2762 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
13 | fveq2 6891 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝐸‘𝑘) = (𝐸‘𝑖)) | |
14 | 13 | cbviunv 5043 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘) = ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) |
15 | 14 | difeq2i 4119 | . . . . 5 ⊢ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘)) = ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) |
16 | 15 | mpteq2i 5253 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) |
17 | fveq2 6891 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐸‘𝑚) = (𝐸‘𝑛)) | |
18 | oveq2 7416 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝑁..^𝑚) = (𝑁..^𝑛)) | |
19 | 18 | iuneq1d 5024 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) |
20 | 17, 19 | difeq12d 4123 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
21 | 20 | cbvmptv 5261 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
22 | 16, 21 | eqtri 2760 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
23 | 6, 7, 8, 9, 10, 11, 12, 22 | meaiuninclem 45186 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
24 | 5, 23 | eqbrtrd 5170 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ∖ cdif 3945 ⊆ wss 3948 ∪ ciun 4997 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5676 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℝcr 11108 1c1 11110 + caddc 11112 ≤ cle 11248 ℤcz 12557 ℤ≥cuz 12821 ..^cfzo 13626 ⇝ cli 15427 Meascmea 45155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-omul 8470 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-xadd 13092 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-sum 15632 df-salg 45015 df-sumge0 45069 df-mea 45156 |
This theorem is referenced by: meaiuninc2 45188 meaiunincf 45189 |
Copyright terms: Public domain | W3C validator |