![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiuninc | Structured version Visualization version GIF version |
Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meaiuninc.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiuninc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiuninc.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiuninc.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiuninc.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
meaiuninc.x | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
meaiuninc.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiuninc | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiuninc.s | . . . 4 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
2 | 2fveq3 6912 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) | |
3 | 2 | cbvmptv 5261 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
4 | 1, 3 | eqtri 2763 | . . 3 ⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚)))) |
6 | meaiuninc.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
7 | meaiuninc.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
8 | meaiuninc.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
9 | meaiuninc.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
10 | meaiuninc.i | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) | |
11 | meaiuninc.x | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) | |
12 | 4, 1 | eqtr3i 2765 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
13 | fveq2 6907 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝐸‘𝑘) = (𝐸‘𝑖)) | |
14 | 13 | cbviunv 5045 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘) = ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) |
15 | 14 | difeq2i 4133 | . . . . 5 ⊢ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘)) = ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) |
16 | 15 | mpteq2i 5253 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) |
17 | fveq2 6907 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝐸‘𝑚) = (𝐸‘𝑛)) | |
18 | oveq2 7439 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → (𝑁..^𝑚) = (𝑁..^𝑛)) | |
19 | 18 | iuneq1d 5024 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) |
20 | 17, 19 | difeq12d 4137 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) = ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
21 | 20 | cbvmptv 5261 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
22 | 16, 21 | eqtri 2763 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪ 𝑘 ∈ (𝑁..^𝑚)(𝐸‘𝑘))) = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
23 | 6, 7, 8, 9, 10, 11, 12, 22 | meaiuninclem 46436 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
24 | 5, 23 | eqbrtrd 5170 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∖ cdif 3960 ⊆ wss 3963 ∪ ciun 4996 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 ≤ cle 11294 ℤcz 12611 ℤ≥cuz 12876 ..^cfzo 13691 ⇝ cli 15517 Meascmea 46405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-xadd 13153 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-salg 46265 df-sumge0 46319 df-mea 46406 |
This theorem is referenced by: meaiuninc2 46438 meaiunincf 46439 |
Copyright terms: Public domain | W3C validator |