Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iundisjcnt | Structured version Visualization version GIF version |
Description: Rewrite a countable union as a disjoint union. (Contributed by Thierry Arnoux, 16-Feb-2017.) |
Ref | Expression |
---|---|
iundisjcnt.0 | ⊢ Ⅎ𝑛𝐵 |
iundisjcnt.1 | ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) |
iundisjcnt.2 | ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) |
Ref | Expression |
---|---|
iundisjcnt | ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2909 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | iundisjcnt.0 | . . . 4 ⊢ Ⅎ𝑛𝐵 | |
3 | iundisjcnt.1 | . . . 4 ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) | |
4 | 1, 2, 3 | iundisjf 30924 | . . 3 ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) |
5 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → 𝑁 = ℕ) | |
6 | 5 | iuneq1d 4957 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ ℕ 𝐴) |
7 | 5 | iuneq1d 4957 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
8 | 4, 6, 7 | 3eqtr4a 2806 | . 2 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
9 | 2, 3 | iundisjfi 31113 | . . 3 ⊢ ∪ 𝑛 ∈ (1..^𝑀)𝐴 = ∪ 𝑛 ∈ (1..^𝑀)(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) |
10 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → 𝑁 = (1..^𝑀)) | |
11 | 10 | iuneq1d 4957 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ (1..^𝑀)𝐴) |
12 | 10 | iuneq1d 4957 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) = ∪ 𝑛 ∈ (1..^𝑀)(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
13 | 9, 11, 12 | 3eqtr4a 2806 | . 2 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
14 | iundisjcnt.2 | . 2 ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) | |
15 | 8, 13, 14 | mpjaodan 956 | 1 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1542 Ⅎwnfc 2889 ∖ cdif 3889 ∪ ciun 4930 (class class class)co 7271 1c1 10873 ℕcn 11973 ..^cfzo 13381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 |
This theorem is referenced by: measiuns 32181 |
Copyright terms: Public domain | W3C validator |