| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iundisjcnt | Structured version Visualization version GIF version | ||
| Description: Rewrite a countable union as a disjoint union. (Contributed by Thierry Arnoux, 16-Feb-2017.) |
| Ref | Expression |
|---|---|
| iundisjcnt.0 | ⊢ Ⅎ𝑛𝐵 |
| iundisjcnt.1 | ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) |
| iundisjcnt.2 | ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) |
| Ref | Expression |
|---|---|
| iundisjcnt | ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
| 2 | iundisjcnt.0 | . . . 4 ⊢ Ⅎ𝑛𝐵 | |
| 3 | iundisjcnt.1 | . . . 4 ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) | |
| 4 | 1, 2, 3 | iundisjf 32521 | . . 3 ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → 𝑁 = ℕ) | |
| 6 | 5 | iuneq1d 4966 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ ℕ 𝐴) |
| 7 | 5 | iuneq1d 4966 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| 8 | 4, 6, 7 | 3eqtr4a 2790 | . 2 ⊢ ((𝜑 ∧ 𝑁 = ℕ) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| 9 | 2, 3 | iundisjfi 32731 | . . 3 ⊢ ∪ 𝑛 ∈ (1..^𝑀)𝐴 = ∪ 𝑛 ∈ (1..^𝑀)(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → 𝑁 = (1..^𝑀)) | |
| 11 | 10 | iuneq1d 4966 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ (1..^𝑀)𝐴) |
| 12 | 10 | iuneq1d 4966 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) = ∪ 𝑛 ∈ (1..^𝑀)(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| 13 | 9, 11, 12 | 3eqtr4a 2790 | . 2 ⊢ ((𝜑 ∧ 𝑁 = (1..^𝑀)) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| 14 | iundisjcnt.2 | . 2 ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) | |
| 15 | 8, 13, 14 | mpjaodan 960 | 1 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 Ⅎwnfc 2876 ∖ cdif 3896 ∪ ciun 4938 (class class class)co 7340 1c1 10998 ℕcn 12116 ..^cfzo 13545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-1st 7915 df-2nd 7916 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-er 8616 df-en 8864 df-dom 8865 df-sdom 8866 df-sup 9320 df-inf 9321 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-nn 12117 df-n0 12373 df-z 12460 df-uz 12724 df-fz 13399 df-fzo 13546 |
| This theorem is referenced by: measiuns 34198 |
| Copyright terms: Public domain | W3C validator |