Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsdivcl | Structured version Visualization version GIF version |
Description: The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.) |
Ref | Expression |
---|---|
dvdsdivcl | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5107 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∥ 𝑁 ↔ 𝐴 ∥ 𝑁)) | |
2 | 1 | elrab 3644 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ (𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁)) |
3 | nndivdvds 16080 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 ∥ 𝑁 ↔ (𝑁 / 𝐴) ∈ ℕ)) | |
4 | 3 | biimpd 228 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 ∥ 𝑁 → (𝑁 / 𝐴) ∈ ℕ)) |
5 | 4 | expcom 415 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (𝑁 ∈ ℕ → (𝐴 ∥ 𝑁 → (𝑁 / 𝐴) ∈ ℕ))) |
6 | 5 | com23 86 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → (𝐴 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ))) |
7 | 6 | imp 408 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ)) |
8 | nnne0 12121 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
9 | 8 | anim1ci 617 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0)) |
10 | divconjdvds 16132 | . . . . . 6 ⊢ ((𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0) → (𝑁 / 𝐴) ∥ 𝑁) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 / 𝐴) ∥ 𝑁) |
12 | 7, 11 | jctird 528 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁) → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))) |
13 | 2, 12 | sylbi 216 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))) |
14 | 13 | impcom 409 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)) |
15 | breq1 5107 | . . 3 ⊢ (𝑥 = (𝑁 / 𝐴) → (𝑥 ∥ 𝑁 ↔ (𝑁 / 𝐴) ∥ 𝑁)) | |
16 | 15 | elrab 3644 | . 2 ⊢ ((𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)) |
17 | 14, 16 | sylibr 233 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ≠ wne 2942 {crab 3406 class class class wbr 5104 (class class class)co 7350 0cc0 10985 / cdiv 11746 ℕcn 12087 ∥ cdvds 16071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6250 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-om 7794 df-2nd 7913 df-frecs 8180 df-wrecs 8211 df-recs 8285 df-rdg 8324 df-er 8582 df-en 8818 df-dom 8819 df-sdom 8820 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 df-nn 12088 df-z 12434 df-dvds 16072 |
This theorem is referenced by: dvdsflip 16134 fsumdvdsdiaglem 26454 fsumdvdsdiag 26455 fsumdvdscom 26456 muinv 26464 logsqvma 26812 logsqvma2 26813 selberg 26818 selberg34r 26841 pntsval2 26846 pntrlog2bndlem1 26847 |
Copyright terms: Public domain | W3C validator |