MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsdivcl Structured version   Visualization version   GIF version

Theorem dvdsdivcl 16025
Description: The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
Assertion
Ref Expression
dvdsdivcl ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem dvdsdivcl
StepHypRef Expression
1 breq1 5077 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑁𝐴𝑁))
21elrab 3624 . . . 4 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝐴 ∈ ℕ ∧ 𝐴𝑁))
3 nndivdvds 15972 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 ↔ (𝑁 / 𝐴) ∈ ℕ))
43biimpd 228 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ))
54expcom 414 . . . . . . 7 (𝐴 ∈ ℕ → (𝑁 ∈ ℕ → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ)))
65com23 86 . . . . . 6 (𝐴 ∈ ℕ → (𝐴𝑁 → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ)))
76imp 407 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ))
8 nnne0 12007 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98anim1ci 616 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝐴𝑁𝐴 ≠ 0))
10 divconjdvds 16024 . . . . . 6 ((𝐴𝑁𝐴 ≠ 0) → (𝑁 / 𝐴) ∥ 𝑁)
119, 10syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 / 𝐴) ∥ 𝑁)
127, 11jctird 527 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
132, 12sylbi 216 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
1413impcom 408 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
15 breq1 5077 . . 3 (𝑥 = (𝑁 / 𝐴) → (𝑥𝑁 ↔ (𝑁 / 𝐴) ∥ 𝑁))
1615elrab 3624 . 2 ((𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
1714, 16sylibr 233 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2943  {crab 3068   class class class wbr 5074  (class class class)co 7275  0cc0 10871   / cdiv 11632  cn 11973  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-z 12320  df-dvds 15964
This theorem is referenced by:  dvdsflip  16026  fsumdvdsdiaglem  26332  fsumdvdsdiag  26333  fsumdvdscom  26334  muinv  26342  logsqvma  26690  logsqvma2  26691  selberg  26696  selberg34r  26719  pntsval2  26724  pntrlog2bndlem1  26725
  Copyright terms: Public domain W3C validator