MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsdivcl Structured version   Visualization version   GIF version

Theorem dvdsdivcl 16264
Description: The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
Assertion
Ref Expression
dvdsdivcl ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem dvdsdivcl
StepHypRef Expression
1 breq1 5152 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑁𝐴𝑁))
21elrab 3684 . . . 4 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝐴 ∈ ℕ ∧ 𝐴𝑁))
3 nndivdvds 16211 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 ↔ (𝑁 / 𝐴) ∈ ℕ))
43biimpd 228 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ))
54expcom 413 . . . . . . 7 (𝐴 ∈ ℕ → (𝑁 ∈ ℕ → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ)))
65com23 86 . . . . . 6 (𝐴 ∈ ℕ → (𝐴𝑁 → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ)))
76imp 406 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ))
8 nnne0 12251 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98anim1ci 615 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝐴𝑁𝐴 ≠ 0))
10 divconjdvds 16263 . . . . . 6 ((𝐴𝑁𝐴 ≠ 0) → (𝑁 / 𝐴) ∥ 𝑁)
119, 10syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 / 𝐴) ∥ 𝑁)
127, 11jctird 526 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
132, 12sylbi 216 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
1413impcom 407 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
15 breq1 5152 . . 3 (𝑥 = (𝑁 / 𝐴) → (𝑥𝑁 ↔ (𝑁 / 𝐴) ∥ 𝑁))
1615elrab 3684 . 2 ((𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
1714, 16sylibr 233 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wne 2939  {crab 3431   class class class wbr 5149  (class class class)co 7412  0cc0 11113   / cdiv 11876  cn 12217  cdvds 16202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-z 12564  df-dvds 16203
This theorem is referenced by:  dvdsflip  16265  fsumdvdsdiaglem  26920  fsumdvdsdiag  26921  fsumdvdscom  26922  muinv  26930  logsqvma  27278  logsqvma2  27279  selberg  27284  selberg34r  27307  pntsval2  27312  pntrlog2bndlem1  27313
  Copyright terms: Public domain W3C validator