MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsdivcl Structured version   Visualization version   GIF version

Theorem dvdsdivcl 15662
Description: The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
Assertion
Ref Expression
dvdsdivcl ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem dvdsdivcl
StepHypRef Expression
1 breq1 5055 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑁𝐴𝑁))
21elrab 3666 . . . 4 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝐴 ∈ ℕ ∧ 𝐴𝑁))
3 nndivdvds 15612 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 ↔ (𝑁 / 𝐴) ∈ ℕ))
43biimpd 232 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ))
54expcom 417 . . . . . . 7 (𝐴 ∈ ℕ → (𝑁 ∈ ℕ → (𝐴𝑁 → (𝑁 / 𝐴) ∈ ℕ)))
65com23 86 . . . . . 6 (𝐴 ∈ ℕ → (𝐴𝑁 → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ)))
76imp 410 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → (𝑁 / 𝐴) ∈ ℕ))
8 nnne0 11664 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
98anim1ci 618 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝐴𝑁𝐴 ≠ 0))
10 divconjdvds 15661 . . . . . 6 ((𝐴𝑁𝐴 ≠ 0) → (𝑁 / 𝐴) ∥ 𝑁)
119, 10syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 / 𝐴) ∥ 𝑁)
127, 11jctird 530 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝑁) → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
132, 12sylbi 220 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 ∈ ℕ → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁)))
1413impcom 411 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
15 breq1 5055 . . 3 (𝑥 = (𝑁 / 𝐴) → (𝑥𝑁 ↔ (𝑁 / 𝐴) ∥ 𝑁))
1615elrab 3666 . 2 ((𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝐴) ∈ ℕ ∧ (𝑁 / 𝐴) ∥ 𝑁))
1714, 16sylibr 237 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115  wne 3014  {crab 3137   class class class wbr 5052  (class class class)co 7145  0cc0 10529   / cdiv 11289  cn 11630  cdvds 15603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-z 11975  df-dvds 15604
This theorem is referenced by:  dvdsflip  15663  fsumdvdsdiaglem  25764  fsumdvdsdiag  25765  fsumdvdscom  25766  muinv  25774  logsqvma  26122  logsqvma2  26123  selberg  26128  selberg34r  26151  pntsval2  26156  pntrlog2bndlem1  26157
  Copyright terms: Public domain W3C validator