MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej1 Structured version   Visualization version   GIF version

Theorem latjlej1 18468
Description: Add join to both sides of a lattice ordering. (chlej1i 31459 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latjlej1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))

Proof of Theorem latjlej1
StepHypRef Expression
1 latlej.b . . . . . 6 𝐵 = (Base‘𝐾)
2 latlej.l . . . . . 6 = (le‘𝐾)
3 latlej.j . . . . . 6 = (join‘𝐾)
41, 2, 3latlej1 18463 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌 (𝑌 𝑍))
543adant3r1 1183 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 (𝑌 𝑍))
6 simpl 482 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
7 simpr1 1195 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
8 simpr2 1196 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
91, 3latjcl 18454 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
1093adant3r1 1183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
111, 2lattr 18459 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((𝑋 𝑌𝑌 (𝑌 𝑍)) → 𝑋 (𝑌 𝑍)))
126, 7, 8, 10, 11syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 (𝑌 𝑍)) → 𝑋 (𝑌 𝑍)))
135, 12mpan2d 694 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌𝑋 (𝑌 𝑍)))
141, 2, 3latlej2 18464 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍 (𝑌 𝑍))
15143adant3r1 1183 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 (𝑌 𝑍))
1613, 15jctird 526 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 (𝑌 𝑍) ∧ 𝑍 (𝑌 𝑍))))
17 simpr3 1197 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
187, 17, 103jca 1128 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑍) ∈ 𝐵))
191, 2, 3latjle12 18465 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((𝑋 (𝑌 𝑍) ∧ 𝑍 (𝑌 𝑍)) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2018, 19syldan 591 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑌 𝑍) ∧ 𝑍 (𝑌 𝑍)) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2116, 20sylibd 239 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  Latclat 18446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-poset 18330  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-lat 18447
This theorem is referenced by:  latjlej2  18469  latjlej12  18470  ps-2  39502  dalem5  39691  cdlema1N  39815  dalawlem3  39897  dalawlem6  39900  dalawlem7  39901  dalawlem11  39905  dalawlem12  39906  cdleme20d  40336  trlcolem  40750  cdlemh1  40839
  Copyright terms: Public domain W3C validator