![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfznelfzob | Structured version Visualization version GIF version |
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
Ref | Expression |
---|---|
elfznelfzob | ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznelfzo 13755 | . . 3 ⊢ ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
3 | elfzole1 13658 | . . . . . 6 ⊢ (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀) | |
4 | elfzolt2 13659 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾) | |
5 | elfzoel2 13649 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ) | |
6 | elfzoelz 13650 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ) | |
7 | 0lt1 11752 | . . . . . . . . . . 11 ⊢ 0 < 1 | |
8 | breq1 5145 | . . . . . . . . . . 11 ⊢ (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1)) | |
9 | 7, 8 | mpbiri 258 | . . . . . . . . . 10 ⊢ (𝑀 = 0 → 𝑀 < 1) |
10 | zre 12578 | . . . . . . . . . . . 12 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
11 | 10 | adantl 481 | . . . . . . . . . . 11 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ) |
12 | 1red 11231 | . . . . . . . . . . 11 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ) | |
13 | 11, 12 | ltnled 11377 | . . . . . . . . . 10 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀)) |
14 | 9, 13 | imbitrid 243 | . . . . . . . . 9 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀)) |
15 | 14 | con2d 134 | . . . . . . . 8 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0)) |
16 | zre 12578 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
17 | ltlen 11331 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀))) | |
18 | 10, 16, 17 | syl2anr 596 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀))) |
19 | necom 2989 | . . . . . . . . . . . . . . 15 ⊢ (𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾) | |
20 | df-ne 2936 | . . . . . . . . . . . . . . 15 ⊢ (𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾) | |
21 | 19, 20 | sylbb 218 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ≠ 𝑀 → ¬ 𝑀 = 𝐾) |
22 | 21 | adantl 481 | . . . . . . . . . . . . 13 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀) → ¬ 𝑀 = 𝐾) |
23 | 18, 22 | biimtrdi 252 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)) |
24 | 23 | ex 412 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))) |
25 | 24 | com23 86 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))) |
26 | 25 | impcom 407 | . . . . . . . . 9 ⊢ ((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)) |
27 | 26 | imp 406 | . . . . . . . 8 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾) |
28 | 15, 27 | jctird 526 | . . . . . . 7 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))) |
29 | 4, 5, 6, 28 | syl21anc 837 | . . . . . 6 ⊢ (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))) |
30 | 3, 29 | mpd 15 | . . . . 5 ⊢ (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)) |
31 | ioran 982 | . . . . 5 ⊢ (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)) | |
32 | 30, 31 | sylibr 233 | . . . 4 ⊢ (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)) |
33 | 32 | a1i 11 | . . 3 ⊢ (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
34 | 33 | con2d 134 | . 2 ⊢ (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾))) |
35 | 2, 34 | impbid 211 | 1 ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 class class class wbr 5142 (class class class)co 7414 ℝcr 11123 0cc0 11124 1c1 11125 < clt 11264 ≤ cle 11265 ℤcz 12574 ...cfz 13502 ..^cfzo 13645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-fzo 13646 |
This theorem is referenced by: circlemethhgt 34198 |
Copyright terms: Public domain | W3C validator |