MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzob Structured version   Visualization version   GIF version

Theorem elfznelfzob 13138
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzob (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))

Proof of Theorem elfznelfzob
StepHypRef Expression
1 elfznelfzo 13137 . . 3 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
21ex 416 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3 elfzole1 13041 . . . . . 6 (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀)
4 elfzolt2 13042 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾)
5 elfzoel2 13032 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ)
6 elfzoelz 13033 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ)
7 0lt1 11151 . . . . . . . . . . 11 0 < 1
8 breq1 5033 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1))
97, 8mpbiri 261 . . . . . . . . . 10 (𝑀 = 0 → 𝑀 < 1)
10 zre 11973 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110adantl 485 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
12 1red 10631 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ)
1311, 12ltnled 10776 . . . . . . . . . 10 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀))
149, 13syl5ib 247 . . . . . . . . 9 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀))
1514con2d 136 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0))
16 zre 11973 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
17 ltlen 10730 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
1810, 16, 17syl2anr 599 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
19 necom 3040 . . . . . . . . . . . . . . 15 (𝐾𝑀𝑀𝐾)
20 df-ne 2988 . . . . . . . . . . . . . . 15 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
2119, 20sylbb 222 . . . . . . . . . . . . . 14 (𝐾𝑀 → ¬ 𝑀 = 𝐾)
2221adantl 485 . . . . . . . . . . . . 13 ((𝑀𝐾𝐾𝑀) → ¬ 𝑀 = 𝐾)
2318, 22syl6bi 256 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))
2423ex 416 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)))
2524com23 86 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)))
2625impcom 411 . . . . . . . . 9 ((𝑀 < 𝐾𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))
2726imp 410 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾)
2815, 27jctird 530 . . . . . . 7 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
294, 5, 6, 28syl21anc 836 . . . . . 6 (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
303, 29mpd 15 . . . . 5 (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
31 ioran 981 . . . . 5 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
3230, 31sylibr 237 . . . 4 (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))
3332a1i 11 . . 3 (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3433con2d 136 . 2 (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾)))
352, 34impbid 215 1 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cz 11969  ...cfz 12885  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029
This theorem is referenced by:  circlemethhgt  32024
  Copyright terms: Public domain W3C validator