MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzob Structured version   Visualization version   GIF version

Theorem elfznelfzob 13674
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzob (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))

Proof of Theorem elfznelfzob
StepHypRef Expression
1 elfznelfzo 13673 . . 3 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
21ex 412 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3 elfzole1 13567 . . . . . 6 (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀)
4 elfzolt2 13568 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾)
5 elfzoel2 13558 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ)
6 elfzoelz 13559 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ)
7 0lt1 11639 . . . . . . . . . . 11 0 < 1
8 breq1 5092 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1))
97, 8mpbiri 258 . . . . . . . . . 10 (𝑀 = 0 → 𝑀 < 1)
10 zre 12472 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110adantl 481 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
12 1red 11113 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ)
1311, 12ltnled 11260 . . . . . . . . . 10 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀))
149, 13imbitrid 244 . . . . . . . . 9 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀))
1514con2d 134 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0))
16 zre 12472 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
17 ltlen 11214 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
1810, 16, 17syl2anr 597 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
19 necom 2981 . . . . . . . . . . . . . . 15 (𝐾𝑀𝑀𝐾)
20 df-ne 2929 . . . . . . . . . . . . . . 15 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
2119, 20sylbb 219 . . . . . . . . . . . . . 14 (𝐾𝑀 → ¬ 𝑀 = 𝐾)
2221adantl 481 . . . . . . . . . . . . 13 ((𝑀𝐾𝐾𝑀) → ¬ 𝑀 = 𝐾)
2318, 22biimtrdi 253 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))
2423ex 412 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)))
2524com23 86 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)))
2625impcom 407 . . . . . . . . 9 ((𝑀 < 𝐾𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))
2726imp 406 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾)
2815, 27jctird 526 . . . . . . 7 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
294, 5, 6, 28syl21anc 837 . . . . . 6 (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
303, 29mpd 15 . . . . 5 (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
31 ioran 985 . . . . 5 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
3230, 31sylibr 234 . . . 4 (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))
3332a1i 11 . . 3 (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3433con2d 134 . 2 (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾)))
352, 34impbid 212 1 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   < clt 11146  cle 11147  cz 12468  ...cfz 13407  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by:  circlemethhgt  34656
  Copyright terms: Public domain W3C validator