Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfznelfzob | Structured version Visualization version GIF version |
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
Ref | Expression |
---|---|
elfznelfzob | ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznelfzo 13501 | . . 3 ⊢ ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)) | |
2 | 1 | ex 413 | . 2 ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
3 | elfzole1 13404 | . . . . . 6 ⊢ (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀) | |
4 | elfzolt2 13405 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾) | |
5 | elfzoel2 13395 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ) | |
6 | elfzoelz 13396 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ) | |
7 | 0lt1 11506 | . . . . . . . . . . 11 ⊢ 0 < 1 | |
8 | breq1 5078 | . . . . . . . . . . 11 ⊢ (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1)) | |
9 | 7, 8 | mpbiri 257 | . . . . . . . . . 10 ⊢ (𝑀 = 0 → 𝑀 < 1) |
10 | zre 12332 | . . . . . . . . . . . 12 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
11 | 10 | adantl 482 | . . . . . . . . . . 11 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ) |
12 | 1red 10985 | . . . . . . . . . . 11 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ) | |
13 | 11, 12 | ltnled 11131 | . . . . . . . . . 10 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀)) |
14 | 9, 13 | syl5ib 243 | . . . . . . . . 9 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀)) |
15 | 14 | con2d 134 | . . . . . . . 8 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0)) |
16 | zre 12332 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
17 | ltlen 11085 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀))) | |
18 | 10, 16, 17 | syl2anr 597 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀))) |
19 | necom 2998 | . . . . . . . . . . . . . . 15 ⊢ (𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾) | |
20 | df-ne 2945 | . . . . . . . . . . . . . . 15 ⊢ (𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾) | |
21 | 19, 20 | sylbb 218 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ≠ 𝑀 → ¬ 𝑀 = 𝐾) |
22 | 21 | adantl 482 | . . . . . . . . . . . . 13 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀) → ¬ 𝑀 = 𝐾) |
23 | 18, 22 | syl6bi 252 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)) |
24 | 23 | ex 413 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))) |
25 | 24 | com23 86 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))) |
26 | 25 | impcom 408 | . . . . . . . . 9 ⊢ ((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)) |
27 | 26 | imp 407 | . . . . . . . 8 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾) |
28 | 15, 27 | jctird 527 | . . . . . . 7 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))) |
29 | 4, 5, 6, 28 | syl21anc 835 | . . . . . 6 ⊢ (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))) |
30 | 3, 29 | mpd 15 | . . . . 5 ⊢ (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)) |
31 | ioran 981 | . . . . 5 ⊢ (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)) | |
32 | 30, 31 | sylibr 233 | . . . 4 ⊢ (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)) |
33 | 32 | a1i 11 | . . 3 ⊢ (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
34 | 33 | con2d 134 | . 2 ⊢ (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾))) |
35 | 2, 34 | impbid 211 | 1 ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 class class class wbr 5075 (class class class)co 7284 ℝcr 10879 0cc0 10880 1c1 10881 < clt 11018 ≤ cle 11019 ℤcz 12328 ...cfz 13248 ..^cfzo 13391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 |
This theorem is referenced by: circlemethhgt 32632 |
Copyright terms: Public domain | W3C validator |