MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzob Structured version   Visualization version   GIF version

Theorem elfznelfzob 13823
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzob (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))

Proof of Theorem elfznelfzob
StepHypRef Expression
1 elfznelfzo 13822 . . 3 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
21ex 412 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3 elfzole1 13724 . . . . . 6 (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀)
4 elfzolt2 13725 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾)
5 elfzoel2 13715 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ)
6 elfzoelz 13716 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ)
7 0lt1 11812 . . . . . . . . . . 11 0 < 1
8 breq1 5169 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1))
97, 8mpbiri 258 . . . . . . . . . 10 (𝑀 = 0 → 𝑀 < 1)
10 zre 12643 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110adantl 481 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
12 1red 11291 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ)
1311, 12ltnled 11437 . . . . . . . . . 10 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀))
149, 13imbitrid 244 . . . . . . . . 9 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀))
1514con2d 134 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0))
16 zre 12643 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
17 ltlen 11391 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
1810, 16, 17syl2anr 596 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
19 necom 3000 . . . . . . . . . . . . . . 15 (𝐾𝑀𝑀𝐾)
20 df-ne 2947 . . . . . . . . . . . . . . 15 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
2119, 20sylbb 219 . . . . . . . . . . . . . 14 (𝐾𝑀 → ¬ 𝑀 = 𝐾)
2221adantl 481 . . . . . . . . . . . . 13 ((𝑀𝐾𝐾𝑀) → ¬ 𝑀 = 𝐾)
2318, 22biimtrdi 253 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))
2423ex 412 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)))
2524com23 86 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)))
2625impcom 407 . . . . . . . . 9 ((𝑀 < 𝐾𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))
2726imp 406 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾)
2815, 27jctird 526 . . . . . . 7 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
294, 5, 6, 28syl21anc 837 . . . . . 6 (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
303, 29mpd 15 . . . . 5 (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
31 ioran 984 . . . . 5 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
3230, 31sylibr 234 . . . 4 (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))
3332a1i 11 . . 3 (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3433con2d 134 . 2 (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾)))
352, 34impbid 212 1 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cle 11325  cz 12639  ...cfz 13567  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by:  circlemethhgt  34620
  Copyright terms: Public domain W3C validator