| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfznelfzob | Structured version Visualization version GIF version | ||
| Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
| Ref | Expression |
|---|---|
| elfznelfzob | ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznelfzo 13709 | . . 3 ⊢ ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
| 3 | elfzole1 13604 | . . . . . 6 ⊢ (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀) | |
| 4 | elfzolt2 13605 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾) | |
| 5 | elfzoel2 13595 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ) | |
| 6 | elfzoelz 13596 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ) | |
| 7 | 0lt1 11676 | . . . . . . . . . . 11 ⊢ 0 < 1 | |
| 8 | breq1 5105 | . . . . . . . . . . 11 ⊢ (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1)) | |
| 9 | 7, 8 | mpbiri 258 | . . . . . . . . . 10 ⊢ (𝑀 = 0 → 𝑀 < 1) |
| 10 | zre 12509 | . . . . . . . . . . . 12 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 11 | 10 | adantl 481 | . . . . . . . . . . 11 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ) |
| 12 | 1red 11151 | . . . . . . . . . . 11 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ) | |
| 13 | 11, 12 | ltnled 11297 | . . . . . . . . . 10 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀)) |
| 14 | 9, 13 | imbitrid 244 | . . . . . . . . 9 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀)) |
| 15 | 14 | con2d 134 | . . . . . . . 8 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0)) |
| 16 | zre 12509 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 17 | ltlen 11251 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀))) | |
| 18 | 10, 16, 17 | syl2anr 597 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀))) |
| 19 | necom 2978 | . . . . . . . . . . . . . . 15 ⊢ (𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾) | |
| 20 | df-ne 2926 | . . . . . . . . . . . . . . 15 ⊢ (𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾) | |
| 21 | 19, 20 | sylbb 219 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ≠ 𝑀 → ¬ 𝑀 = 𝐾) |
| 22 | 21 | adantl 481 | . . . . . . . . . . . . 13 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀) → ¬ 𝑀 = 𝐾) |
| 23 | 18, 22 | biimtrdi 253 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)) |
| 24 | 23 | ex 412 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))) |
| 25 | 24 | com23 86 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))) |
| 26 | 25 | impcom 407 | . . . . . . . . 9 ⊢ ((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)) |
| 27 | 26 | imp 406 | . . . . . . . 8 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾) |
| 28 | 15, 27 | jctird 526 | . . . . . . 7 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))) |
| 29 | 4, 5, 6, 28 | syl21anc 837 | . . . . . 6 ⊢ (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))) |
| 30 | 3, 29 | mpd 15 | . . . . 5 ⊢ (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)) |
| 31 | ioran 985 | . . . . 5 ⊢ (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)) | |
| 32 | 30, 31 | sylibr 234 | . . . 4 ⊢ (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)) |
| 33 | 32 | a1i 11 | . . 3 ⊢ (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
| 34 | 33 | con2d 134 | . 2 ⊢ (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾))) |
| 35 | 2, 34 | impbid 212 | 1 ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 < clt 11184 ≤ cle 11185 ℤcz 12505 ...cfz 13444 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 |
| This theorem is referenced by: circlemethhgt 34627 |
| Copyright terms: Public domain | W3C validator |