![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfznelfzob | Structured version Visualization version GIF version |
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
Ref | Expression |
---|---|
elfznelfzob | ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznelfzo 13822 | . . 3 ⊢ ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
3 | elfzole1 13724 | . . . . . 6 ⊢ (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀) | |
4 | elfzolt2 13725 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾) | |
5 | elfzoel2 13715 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ) | |
6 | elfzoelz 13716 | . . . . . . 7 ⊢ (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ) | |
7 | 0lt1 11812 | . . . . . . . . . . 11 ⊢ 0 < 1 | |
8 | breq1 5169 | . . . . . . . . . . 11 ⊢ (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1)) | |
9 | 7, 8 | mpbiri 258 | . . . . . . . . . 10 ⊢ (𝑀 = 0 → 𝑀 < 1) |
10 | zre 12643 | . . . . . . . . . . . 12 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
11 | 10 | adantl 481 | . . . . . . . . . . 11 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ) |
12 | 1red 11291 | . . . . . . . . . . 11 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ) | |
13 | 11, 12 | ltnled 11437 | . . . . . . . . . 10 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀)) |
14 | 9, 13 | imbitrid 244 | . . . . . . . . 9 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀)) |
15 | 14 | con2d 134 | . . . . . . . 8 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0)) |
16 | zre 12643 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
17 | ltlen 11391 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀))) | |
18 | 10, 16, 17 | syl2anr 596 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀))) |
19 | necom 3000 | . . . . . . . . . . . . . . 15 ⊢ (𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾) | |
20 | df-ne 2947 | . . . . . . . . . . . . . . 15 ⊢ (𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾) | |
21 | 19, 20 | sylbb 219 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ≠ 𝑀 → ¬ 𝑀 = 𝐾) |
22 | 21 | adantl 481 | . . . . . . . . . . . . 13 ⊢ ((𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀) → ¬ 𝑀 = 𝐾) |
23 | 18, 22 | biimtrdi 253 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)) |
24 | 23 | ex 412 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))) |
25 | 24 | com23 86 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))) |
26 | 25 | impcom 407 | . . . . . . . . 9 ⊢ ((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)) |
27 | 26 | imp 406 | . . . . . . . 8 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾) |
28 | 15, 27 | jctird 526 | . . . . . . 7 ⊢ (((𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))) |
29 | 4, 5, 6, 28 | syl21anc 837 | . . . . . 6 ⊢ (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))) |
30 | 3, 29 | mpd 15 | . . . . 5 ⊢ (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)) |
31 | ioran 984 | . . . . 5 ⊢ (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)) | |
32 | 30, 31 | sylibr 234 | . . . 4 ⊢ (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)) |
33 | 32 | a1i 11 | . . 3 ⊢ (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
34 | 33 | con2d 134 | . 2 ⊢ (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾))) |
35 | 2, 34 | impbid 212 | 1 ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 < clt 11324 ≤ cle 11325 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: circlemethhgt 34620 |
Copyright terms: Public domain | W3C validator |