MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzob Structured version   Visualization version   GIF version

Theorem elfznelfzob 13146
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzob (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))

Proof of Theorem elfznelfzob
StepHypRef Expression
1 elfznelfzo 13145 . . 3 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
21ex 415 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3 elfzole1 13049 . . . . . 6 (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀)
4 elfzolt2 13050 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾)
5 elfzoel2 13040 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ)
6 elfzoelz 13041 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ)
7 0lt1 11164 . . . . . . . . . . 11 0 < 1
8 breq1 5071 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1))
97, 8mpbiri 260 . . . . . . . . . 10 (𝑀 = 0 → 𝑀 < 1)
10 zre 11988 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110adantl 484 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
12 1red 10644 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ)
1311, 12ltnled 10789 . . . . . . . . . 10 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀))
149, 13syl5ib 246 . . . . . . . . 9 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀))
1514con2d 136 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0))
16 zre 11988 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
17 ltlen 10743 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
1810, 16, 17syl2anr 598 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
19 necom 3071 . . . . . . . . . . . . . . 15 (𝐾𝑀𝑀𝐾)
20 df-ne 3019 . . . . . . . . . . . . . . 15 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
2119, 20sylbb 221 . . . . . . . . . . . . . 14 (𝐾𝑀 → ¬ 𝑀 = 𝐾)
2221adantl 484 . . . . . . . . . . . . 13 ((𝑀𝐾𝐾𝑀) → ¬ 𝑀 = 𝐾)
2318, 22syl6bi 255 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))
2423ex 415 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)))
2524com23 86 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)))
2625impcom 410 . . . . . . . . 9 ((𝑀 < 𝐾𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))
2726imp 409 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾)
2815, 27jctird 529 . . . . . . 7 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
294, 5, 6, 28syl21anc 835 . . . . . 6 (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
303, 29mpd 15 . . . . 5 (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
31 ioran 980 . . . . 5 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
3230, 31sylibr 236 . . . 4 (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))
3332a1i 11 . . 3 (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3433con2d 136 . 2 (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾)))
352, 34impbid 214 1 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   < clt 10677  cle 10678  cz 11984  ...cfz 12895  ..^cfzo 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037
This theorem is referenced by:  circlemethhgt  31916
  Copyright terms: Public domain W3C validator