MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzob Structured version   Visualization version   GIF version

Theorem elfznelfzob 13502
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzob (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))

Proof of Theorem elfznelfzob
StepHypRef Expression
1 elfznelfzo 13501 . . 3 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
21ex 413 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3 elfzole1 13404 . . . . . 6 (𝑀 ∈ (1..^𝐾) → 1 ≤ 𝑀)
4 elfzolt2 13405 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 < 𝐾)
5 elfzoel2 13395 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝐾 ∈ ℤ)
6 elfzoelz 13396 . . . . . . 7 (𝑀 ∈ (1..^𝐾) → 𝑀 ∈ ℤ)
7 0lt1 11506 . . . . . . . . . . 11 0 < 1
8 breq1 5078 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 1 ↔ 0 < 1))
97, 8mpbiri 257 . . . . . . . . . 10 (𝑀 = 0 → 𝑀 < 1)
10 zre 12332 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1110adantl 482 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
12 1red 10985 . . . . . . . . . . 11 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 1 ∈ ℝ)
1311, 12ltnled 11131 . . . . . . . . . 10 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 < 1 ↔ ¬ 1 ≤ 𝑀))
149, 13syl5ib 243 . . . . . . . . 9 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 = 0 → ¬ 1 ≤ 𝑀))
1514con2d 134 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → ¬ 𝑀 = 0))
16 zre 12332 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
17 ltlen 11085 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
1810, 16, 17syl2anr 597 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀𝐾𝐾𝑀)))
19 necom 2998 . . . . . . . . . . . . . . 15 (𝐾𝑀𝑀𝐾)
20 df-ne 2945 . . . . . . . . . . . . . . 15 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
2119, 20sylbb 218 . . . . . . . . . . . . . 14 (𝐾𝑀 → ¬ 𝑀 = 𝐾)
2221adantl 482 . . . . . . . . . . . . 13 ((𝑀𝐾𝐾𝑀) → ¬ 𝑀 = 𝐾)
2318, 22syl6bi 252 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾))
2423ex 413 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝐾 → ¬ 𝑀 = 𝐾)))
2524com23 86 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝑀 < 𝐾 → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾)))
2625impcom 408 . . . . . . . . 9 ((𝑀 < 𝐾𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾))
2726imp 407 . . . . . . . 8 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ¬ 𝑀 = 𝐾)
2815, 27jctird 527 . . . . . . 7 (((𝑀 < 𝐾𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
294, 5, 6, 28syl21anc 835 . . . . . 6 (𝑀 ∈ (1..^𝐾) → (1 ≤ 𝑀 → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾)))
303, 29mpd 15 . . . . 5 (𝑀 ∈ (1..^𝐾) → (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
31 ioran 981 . . . . 5 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
3230, 31sylibr 233 . . . 4 (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾))
3332a1i 11 . . 3 (𝑀 ∈ (0...𝐾) → (𝑀 ∈ (1..^𝐾) → ¬ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
3433con2d 134 . 2 (𝑀 ∈ (0...𝐾) → ((𝑀 = 0 ∨ 𝑀 = 𝐾) → ¬ 𝑀 ∈ (1..^𝐾)))
352, 34impbid 211 1 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2107  wne 2944   class class class wbr 5075  (class class class)co 7284  cr 10879  0cc0 10880  1c1 10881   < clt 11018  cle 11019  cz 12328  ...cfz 13248  ..^cfzo 13391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-n0 12243  df-z 12329  df-uz 12592  df-fz 13249  df-fzo 13392
This theorem is referenced by:  circlemethhgt  32632
  Copyright terms: Public domain W3C validator