Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem8 Structured version   Visualization version   GIF version

Theorem lcfrlem8 41550
Description: Lemma for lcf1o 41552 and lcfr 41586. (Contributed by NM, 21-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem8.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lcfrlem8 (𝜑 → (𝐽𝑋) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Distinct variable groups:   𝑥,𝑤,   𝑥, 0   𝑥,𝑣,𝑉   𝑥, ·   𝑣,𝑘,𝑤,𝑥,𝑋   𝑥, +   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑘)   + (𝑤,𝑣,𝑓,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑅(𝑤,𝑣,𝑓,𝑘)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑘)   · (𝑤,𝑣,𝑓,𝑘)   𝑈(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑓,𝑘)   (𝑣,𝑓,𝑘)   𝑉(𝑤,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   𝑋(𝑓)   0 (𝑤,𝑣,𝑓,𝑘)

Proof of Theorem lcfrlem8
StepHypRef Expression
1 lcfrlem8.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2 sneq 4602 . . . . . . 7 (𝑥 = 𝑋 → {𝑥} = {𝑋})
32fveq2d 6865 . . . . . 6 (𝑥 = 𝑋 → ( ‘{𝑥}) = ( ‘{𝑋}))
4 oveq2 7398 . . . . . . . 8 (𝑥 = 𝑋 → (𝑘 · 𝑥) = (𝑘 · 𝑋))
54oveq2d 7406 . . . . . . 7 (𝑥 = 𝑋 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑘 · 𝑋)))
65eqeq2d 2741 . . . . . 6 (𝑥 = 𝑋 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑋))))
73, 6rexeqbidv 3322 . . . . 5 (𝑥 = 𝑋 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
87riotabidv 7349 . . . 4 (𝑥 = 𝑋 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
98mpteq2dv 5204 . . 3 (𝑥 = 𝑋 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
10 lcf1o.j . . 3 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
11 lcf1o.v . . 3 𝑉 = (Base‘𝑈)
129, 10, 11mptfvmpt 7205 . 2 (𝑋 ∈ (𝑉 ∖ { 0 }) → (𝐽𝑋) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
131, 12syl 17 1 (𝜑 → (𝐽𝑋) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  cdif 3914  {csn 4592  cmpt 5191  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  LFnlclfn 39057  LKerclk 39085  LDualcld 39123  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  ocHcoch 41348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393
This theorem is referenced by:  lcfrlem9  41551  lcfrlem10  41553  lcfrlem11  41554
  Copyright terms: Public domain W3C validator