| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcf1o 41530 and lcfr 41564. (Contributed by NM, 21-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcf1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcf1o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcf1o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcf1o.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcf1o.a | ⊢ + = (+g‘𝑈) |
| lcf1o.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lcf1o.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcf1o.r | ⊢ 𝑅 = (Base‘𝑆) |
| lcf1o.z | ⊢ 0 = (0g‘𝑈) |
| lcf1o.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcf1o.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcf1o.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcf1o.q | ⊢ 𝑄 = (0g‘𝐷) |
| lcf1o.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcf1o.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
| lcflo.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| lcfrlem8 | ⊢ (𝜑 → (𝐽‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem8.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 2 | sneq 4589 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
| 3 | 2 | fveq2d 6830 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ( ⊥ ‘{𝑥}) = ( ⊥ ‘{𝑋})) |
| 4 | oveq2 7361 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑘 · 𝑥) = (𝑘 · 𝑋)) | |
| 5 | 4 | oveq2d 7369 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑘 · 𝑋))) |
| 6 | 5 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑋)))) |
| 7 | 3, 6 | rexeqbidv 3311 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) |
| 8 | 7 | riotabidv 7312 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) |
| 9 | 8 | mpteq2dv 5189 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
| 10 | lcf1o.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
| 11 | lcf1o.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 12 | 9, 10, 11 | mptfvmpt 7168 | . 2 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → (𝐽‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
| 13 | 1, 12 | syl 17 | 1 ⊢ (𝜑 → (𝐽‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 ∖ cdif 3902 {csn 4579 ↦ cmpt 5176 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 LFnlclfn 39035 LKerclk 39063 LDualcld 39101 HLchlt 39328 LHypclh 39963 DVecHcdvh 41057 ocHcoch 41326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 |
| This theorem is referenced by: lcfrlem9 41529 lcfrlem10 41531 lcfrlem11 41532 |
| Copyright terms: Public domain | W3C validator |