Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem8 Structured version   Visualization version   GIF version

Theorem lcfrlem8 40876
Description: Lemma for lcf1o 40878 and lcfr 40912. (Contributed by NM, 21-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHypβ€˜πΎ)
lcf1o.o βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
lcf1o.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
lcf1o.v 𝑉 = (Baseβ€˜π‘ˆ)
lcf1o.a + = (+gβ€˜π‘ˆ)
lcf1o.t Β· = ( ·𝑠 β€˜π‘ˆ)
lcf1o.s 𝑆 = (Scalarβ€˜π‘ˆ)
lcf1o.r 𝑅 = (Baseβ€˜π‘†)
lcf1o.z 0 = (0gβ€˜π‘ˆ)
lcf1o.f 𝐹 = (LFnlβ€˜π‘ˆ)
lcf1o.l 𝐿 = (LKerβ€˜π‘ˆ)
lcf1o.d 𝐷 = (LDualβ€˜π‘ˆ)
lcf1o.q 𝑄 = (0gβ€˜π·)
lcf1o.c 𝐢 = {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}
lcf1o.j 𝐽 = (π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{π‘₯})𝑣 = (𝑀 + (π‘˜ Β· π‘₯)))))
lcflo.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
lcfrlem8.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
Assertion
Ref Expression
lcfrlem8 (πœ‘ β†’ (π½β€˜π‘‹) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑋})𝑣 = (𝑀 + (π‘˜ Β· 𝑋)))))
Distinct variable groups:   π‘₯,𝑀, βŠ₯   π‘₯, 0   π‘₯,𝑣,𝑉   π‘₯, Β·   𝑣,π‘˜,𝑀,π‘₯,𝑋   π‘₯, +   π‘₯,𝑅
Allowed substitution hints:   πœ‘(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝐢(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝐷(π‘₯,𝑀,𝑣,𝑓,π‘˜)   + (𝑀,𝑣,𝑓,π‘˜)   𝑄(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝑅(𝑀,𝑣,𝑓,π‘˜)   𝑆(π‘₯,𝑀,𝑣,𝑓,π‘˜)   Β· (𝑀,𝑣,𝑓,π‘˜)   π‘ˆ(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝐹(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝐻(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝐽(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝐾(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝐿(π‘₯,𝑀,𝑣,𝑓,π‘˜)   βŠ₯ (𝑣,𝑓,π‘˜)   𝑉(𝑀,𝑓,π‘˜)   π‘Š(π‘₯,𝑀,𝑣,𝑓,π‘˜)   𝑋(𝑓)   0 (𝑀,𝑣,𝑓,π‘˜)

Proof of Theorem lcfrlem8
StepHypRef Expression
1 lcfrlem8.x . 2 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
2 sneq 4630 . . . . . . 7 (π‘₯ = 𝑋 β†’ {π‘₯} = {𝑋})
32fveq2d 6885 . . . . . 6 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜{π‘₯}) = ( βŠ₯ β€˜{𝑋}))
4 oveq2 7409 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (π‘˜ Β· π‘₯) = (π‘˜ Β· 𝑋))
54oveq2d 7417 . . . . . . 7 (π‘₯ = 𝑋 β†’ (𝑀 + (π‘˜ Β· π‘₯)) = (𝑀 + (π‘˜ Β· 𝑋)))
65eqeq2d 2735 . . . . . 6 (π‘₯ = 𝑋 β†’ (𝑣 = (𝑀 + (π‘˜ Β· π‘₯)) ↔ 𝑣 = (𝑀 + (π‘˜ Β· 𝑋))))
73, 6rexeqbidv 3335 . . . . 5 (π‘₯ = 𝑋 β†’ (βˆƒπ‘€ ∈ ( βŠ₯ β€˜{π‘₯})𝑣 = (𝑀 + (π‘˜ Β· π‘₯)) ↔ βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑋})𝑣 = (𝑀 + (π‘˜ Β· 𝑋))))
87riotabidv 7359 . . . 4 (π‘₯ = 𝑋 β†’ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{π‘₯})𝑣 = (𝑀 + (π‘˜ Β· π‘₯))) = (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑋})𝑣 = (𝑀 + (π‘˜ Β· 𝑋))))
98mpteq2dv 5240 . . 3 (π‘₯ = 𝑋 β†’ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{π‘₯})𝑣 = (𝑀 + (π‘˜ Β· π‘₯)))) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑋})𝑣 = (𝑀 + (π‘˜ Β· 𝑋)))))
10 lcf1o.j . . 3 𝐽 = (π‘₯ ∈ (𝑉 βˆ– { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{π‘₯})𝑣 = (𝑀 + (π‘˜ Β· π‘₯)))))
11 lcf1o.v . . 3 𝑉 = (Baseβ€˜π‘ˆ)
129, 10, 11mptfvmpt 7221 . 2 (𝑋 ∈ (𝑉 βˆ– { 0 }) β†’ (π½β€˜π‘‹) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑋})𝑣 = (𝑀 + (π‘˜ Β· 𝑋)))))
131, 12syl 17 1 (πœ‘ β†’ (π½β€˜π‘‹) = (𝑣 ∈ 𝑉 ↦ (β„©π‘˜ ∈ 𝑅 βˆƒπ‘€ ∈ ( βŠ₯ β€˜{𝑋})𝑣 = (𝑀 + (π‘˜ Β· 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3062  {crab 3424   βˆ– cdif 3937  {csn 4620   ↦ cmpt 5221  β€˜cfv 6533  β„©crio 7356  (class class class)co 7401  Basecbs 17142  +gcplusg 17195  Scalarcsca 17198   ·𝑠 cvsca 17199  0gc0g 17383  LFnlclfn 38383  LKerclk 38411  LDualcld 38449  HLchlt 38676  LHypclh 39311  DVecHcdvh 40405  ocHcoch 40674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404
This theorem is referenced by:  lcfrlem9  40877  lcfrlem10  40879  lcfrlem11  40880
  Copyright terms: Public domain W3C validator