Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem8 | Structured version Visualization version GIF version |
Description: Lemma for lcf1o 39492 and lcfr 39526. (Contributed by NM, 21-Feb-2015.) |
Ref | Expression |
---|---|
lcf1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcf1o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcf1o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcf1o.v | ⊢ 𝑉 = (Base‘𝑈) |
lcf1o.a | ⊢ + = (+g‘𝑈) |
lcf1o.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcf1o.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcf1o.r | ⊢ 𝑅 = (Base‘𝑆) |
lcf1o.z | ⊢ 0 = (0g‘𝑈) |
lcf1o.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcf1o.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcf1o.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcf1o.q | ⊢ 𝑄 = (0g‘𝐷) |
lcf1o.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcf1o.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcflo.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
lcfrlem8 | ⊢ (𝜑 → (𝐽‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem8.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
2 | sneq 4568 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
3 | 2 | fveq2d 6760 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ( ⊥ ‘{𝑥}) = ( ⊥ ‘{𝑋})) |
4 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑘 · 𝑥) = (𝑘 · 𝑋)) | |
5 | 4 | oveq2d 7271 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑘 · 𝑋))) |
6 | 5 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑋)))) |
7 | 3, 6 | rexeqbidv 3328 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) |
8 | 7 | riotabidv 7214 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) |
9 | 8 | mpteq2dv 5172 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
10 | lcf1o.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
11 | lcf1o.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
12 | 9, 10, 11 | mptfvmpt 7086 | . 2 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → (𝐽‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
13 | 1, 12 | syl 17 | 1 ⊢ (𝜑 → (𝐽‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 ∖ cdif 3880 {csn 4558 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 LFnlclfn 36998 LKerclk 37026 LDualcld 37064 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 ocHcoch 39288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 |
This theorem is referenced by: lcfrlem9 39491 lcfrlem10 39493 lcfrlem11 39494 |
Copyright terms: Public domain | W3C validator |