![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem8 | Structured version Visualization version GIF version |
Description: Lemma for lcf1o 40878 and lcfr 40912. (Contributed by NM, 21-Feb-2015.) |
Ref | Expression |
---|---|
lcf1o.h | β’ π» = (LHypβπΎ) |
lcf1o.o | β’ β₯ = ((ocHβπΎ)βπ) |
lcf1o.u | β’ π = ((DVecHβπΎ)βπ) |
lcf1o.v | β’ π = (Baseβπ) |
lcf1o.a | β’ + = (+gβπ) |
lcf1o.t | β’ Β· = ( Β·π βπ) |
lcf1o.s | β’ π = (Scalarβπ) |
lcf1o.r | β’ π = (Baseβπ) |
lcf1o.z | β’ 0 = (0gβπ) |
lcf1o.f | β’ πΉ = (LFnlβπ) |
lcf1o.l | β’ πΏ = (LKerβπ) |
lcf1o.d | β’ π· = (LDualβπ) |
lcf1o.q | β’ π = (0gβπ·) |
lcf1o.c | β’ πΆ = {π β πΉ β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} |
lcf1o.j | β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
lcflo.k | β’ (π β (πΎ β HL β§ π β π»)) |
lcfrlem8.x | β’ (π β π β (π β { 0 })) |
Ref | Expression |
---|---|
lcfrlem8 | β’ (π β (π½βπ) = (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem8.x | . 2 β’ (π β π β (π β { 0 })) | |
2 | sneq 4630 | . . . . . . 7 β’ (π₯ = π β {π₯} = {π}) | |
3 | 2 | fveq2d 6885 | . . . . . 6 β’ (π₯ = π β ( β₯ β{π₯}) = ( β₯ β{π})) |
4 | oveq2 7409 | . . . . . . . 8 β’ (π₯ = π β (π Β· π₯) = (π Β· π)) | |
5 | 4 | oveq2d 7417 | . . . . . . 7 β’ (π₯ = π β (π€ + (π Β· π₯)) = (π€ + (π Β· π))) |
6 | 5 | eqeq2d 2735 | . . . . . 6 β’ (π₯ = π β (π£ = (π€ + (π Β· π₯)) β π£ = (π€ + (π Β· π)))) |
7 | 3, 6 | rexeqbidv 3335 | . . . . 5 β’ (π₯ = π β (βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)) β βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π)))) |
8 | 7 | riotabidv 7359 | . . . 4 β’ (π₯ = π β (β©π β π βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))) = (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π)))) |
9 | 8 | mpteq2dv 5240 | . . 3 β’ (π₯ = π β (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) = (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))) |
10 | lcf1o.j | . . 3 β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) | |
11 | lcf1o.v | . . 3 β’ π = (Baseβπ) | |
12 | 9, 10, 11 | mptfvmpt 7221 | . 2 β’ (π β (π β { 0 }) β (π½βπ) = (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))) |
13 | 1, 12 | syl 17 | 1 β’ (π β (π½βπ) = (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π})π£ = (π€ + (π Β· π))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3062 {crab 3424 β cdif 3937 {csn 4620 β¦ cmpt 5221 βcfv 6533 β©crio 7356 (class class class)co 7401 Basecbs 17142 +gcplusg 17195 Scalarcsca 17198 Β·π cvsca 17199 0gc0g 17383 LFnlclfn 38383 LKerclk 38411 LDualcld 38449 HLchlt 38676 LHypclh 39311 DVecHcdvh 40405 ocHcoch 40674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 |
This theorem is referenced by: lcfrlem9 40877 lcfrlem10 40879 lcfrlem11 40880 |
Copyright terms: Public domain | W3C validator |