| Step | Hyp | Ref
| Expression |
| 1 | | lcfr.q |
. . . 4
⊢ 𝑄 = ∪ 𝑔 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑔)) |
| 2 | | 2fveq3 6911 |
. . . . 5
⊢ (𝑔 = ℎ → ( ⊥ ‘(𝐿‘𝑔)) = ( ⊥ ‘(𝐿‘ℎ))) |
| 3 | 2 | cbviunv 5040 |
. . . 4
⊢ ∪ 𝑔 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑔)) = ∪
ℎ ∈ 𝑅 ( ⊥ ‘(𝐿‘ℎ)) |
| 4 | 1, 3 | eqtri 2765 |
. . 3
⊢ 𝑄 = ∪ ℎ
∈ 𝑅 ( ⊥
‘(𝐿‘ℎ)) |
| 5 | | lcfr.k |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ 𝑅) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 8 | | lcfr.f |
. . . . . . 7
⊢ 𝐹 = (LFnl‘𝑈) |
| 9 | | lcfr.l |
. . . . . . 7
⊢ 𝐿 = (LKer‘𝑈) |
| 10 | | lcfr.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
| 11 | | lcfr.u |
. . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 12 | 10, 11, 5 | dvhlmod 41112 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 13 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ 𝑅) → 𝑈 ∈ LMod) |
| 14 | | lcfr.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ 𝑇) |
| 15 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 16 | | lcfr.t |
. . . . . . . . . . 11
⊢ 𝑇 = (LSubSp‘𝐷) |
| 17 | 15, 16 | lssss 20934 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑇 → 𝑅 ⊆ (Base‘𝐷)) |
| 18 | 14, 17 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ (Base‘𝐷)) |
| 19 | | lcfr.d |
. . . . . . . . . 10
⊢ 𝐷 = (LDual‘𝑈) |
| 20 | 8, 19, 15, 12 | ldualvbase 39127 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
| 21 | 18, 20 | sseqtrd 4020 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ⊆ 𝐹) |
| 22 | 21 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ 𝑅) → ℎ ∈ 𝐹) |
| 23 | 7, 8, 9, 13, 22 | lkrssv 39097 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ 𝑅) → (𝐿‘ℎ) ⊆ (Base‘𝑈)) |
| 24 | | lcfr.o |
. . . . . . 7
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
| 25 | 10, 11, 7, 24 | dochssv 41357 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘ℎ) ⊆ (Base‘𝑈)) → ( ⊥ ‘(𝐿‘ℎ)) ⊆ (Base‘𝑈)) |
| 26 | 6, 23, 25 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝑅) → ( ⊥ ‘(𝐿‘ℎ)) ⊆ (Base‘𝑈)) |
| 27 | 26 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀ℎ ∈ 𝑅 ( ⊥ ‘(𝐿‘ℎ)) ⊆ (Base‘𝑈)) |
| 28 | | iunss 5045 |
. . . 4
⊢ (∪ ℎ
∈ 𝑅 ( ⊥
‘(𝐿‘ℎ)) ⊆ (Base‘𝑈) ↔ ∀ℎ ∈ 𝑅 ( ⊥ ‘(𝐿‘ℎ)) ⊆ (Base‘𝑈)) |
| 29 | 27, 28 | sylibr 234 |
. . 3
⊢ (𝜑 → ∪ ℎ
∈ 𝑅 ( ⊥
‘(𝐿‘ℎ)) ⊆ (Base‘𝑈)) |
| 30 | 4, 29 | eqsstrid 4022 |
. 2
⊢ (𝜑 → 𝑄 ⊆ (Base‘𝑈)) |
| 31 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑄 = ∪ ℎ ∈ 𝑅 ( ⊥ ‘(𝐿‘ℎ))) |
| 32 | 19, 12 | lduallmod 39154 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ LMod) |
| 33 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝐷) = (0g‘𝐷) |
| 34 | 33, 16 | lss0cl 20945 |
. . . . . . 7
⊢ ((𝐷 ∈ LMod ∧ 𝑅 ∈ 𝑇) → (0g‘𝐷) ∈ 𝑅) |
| 35 | 32, 14, 34 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (0g‘𝐷) ∈ 𝑅) |
| 36 | 8, 19, 33, 12 | ldual0vcl 39152 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝐷) ∈ 𝐹) |
| 37 | 7, 8, 9, 12, 36 | lkrssv 39097 |
. . . . . . . 8
⊢ (𝜑 → (𝐿‘(0g‘𝐷)) ⊆ (Base‘𝑈)) |
| 38 | | lcfr.s |
. . . . . . . . 9
⊢ 𝑆 = (LSubSp‘𝑈) |
| 39 | 10, 11, 7, 38, 24 | dochlss 41356 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘(0g‘𝐷)) ⊆ (Base‘𝑈)) → ( ⊥ ‘(𝐿‘(0g‘𝐷))) ∈ 𝑆) |
| 40 | 5, 37, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ( ⊥ ‘(𝐿‘(0g‘𝐷))) ∈ 𝑆) |
| 41 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 42 | 41, 38 | lss0cl 20945 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ ( ⊥
‘(𝐿‘(0g‘𝐷))) ∈ 𝑆) → (0g‘𝑈) ∈ ( ⊥ ‘(𝐿‘(0g‘𝐷)))) |
| 43 | 12, 40, 42 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑈) ∈ ( ⊥ ‘(𝐿‘(0g‘𝐷)))) |
| 44 | | 2fveq3 6911 |
. . . . . . . 8
⊢ (ℎ = (0g‘𝐷) → ( ⊥ ‘(𝐿‘ℎ)) = ( ⊥ ‘(𝐿‘(0g‘𝐷)))) |
| 45 | 44 | eleq2d 2827 |
. . . . . . 7
⊢ (ℎ = (0g‘𝐷) →
((0g‘𝑈)
∈ ( ⊥ ‘(𝐿‘ℎ)) ↔ (0g‘𝑈) ∈ ( ⊥ ‘(𝐿‘(0g‘𝐷))))) |
| 46 | 45 | rspcev 3622 |
. . . . . 6
⊢
(((0g‘𝐷) ∈ 𝑅 ∧ (0g‘𝑈) ∈ ( ⊥ ‘(𝐿‘(0g‘𝐷)))) → ∃ℎ ∈ 𝑅 (0g‘𝑈) ∈ ( ⊥ ‘(𝐿‘ℎ))) |
| 47 | 35, 43, 46 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∃ℎ ∈ 𝑅 (0g‘𝑈) ∈ ( ⊥ ‘(𝐿‘ℎ))) |
| 48 | | eliun 4995 |
. . . . 5
⊢
((0g‘𝑈) ∈ ∪
ℎ ∈ 𝑅 ( ⊥ ‘(𝐿‘ℎ)) ↔ ∃ℎ ∈ 𝑅 (0g‘𝑈) ∈ ( ⊥ ‘(𝐿‘ℎ))) |
| 49 | 47, 48 | sylibr 234 |
. . . 4
⊢ (𝜑 → (0g‘𝑈) ∈ ∪ ℎ
∈ 𝑅 ( ⊥
‘(𝐿‘ℎ))) |
| 50 | 49 | ne0d 4342 |
. . 3
⊢ (𝜑 → ∪ ℎ
∈ 𝑅 ( ⊥
‘(𝐿‘ℎ)) ≠ ∅) |
| 51 | 31, 50 | eqnetrd 3008 |
. 2
⊢ (𝜑 → 𝑄 ≠ ∅) |
| 52 | | eqid 2737 |
. . . 4
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 53 | | lcfr.c |
. . . . 5
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| 54 | | rabeq 3451 |
. . . . . 6
⊢ (𝐹 = (LFnl‘𝑈) → {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 55 | 8, 54 | ax-mp 5 |
. . . . 5
⊢ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| 56 | 53, 55 | eqtri 2765 |
. . . 4
⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| 57 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 58 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄)) → 𝑅 ∈ 𝑇) |
| 59 | | lcfr.rs |
. . . . 5
⊢ (𝜑 → 𝑅 ⊆ 𝐶) |
| 60 | 59 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄)) → 𝑅 ⊆ 𝐶) |
| 61 | | simpr2 1196 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄)) → 𝑎 ∈ 𝑄) |
| 62 | | eqid 2737 |
. . . . 5
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
| 63 | | eqid 2737 |
. . . . 5
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
| 64 | | eqid 2737 |
. . . . 5
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
| 65 | | simpr1 1195 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄)) → 𝑥 ∈ (Base‘(Scalar‘𝑈))) |
| 66 | 10, 24, 11, 7, 8, 9,
19, 16, 57, 58, 4, 61, 62, 63, 64, 65 | lcfrlem5 41548 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄)) → (𝑥( ·𝑠
‘𝑈)𝑎) ∈ 𝑄) |
| 67 | | simpr3 1197 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄)) → 𝑏 ∈ 𝑄) |
| 68 | 10, 24, 11, 52, 8, 9, 19, 16, 56, 4, 57, 58, 60, 66, 67 | lcfrlem42 41586 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄)) → ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ 𝑄) |
| 69 | 68 | ralrimivvva 3205 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑈))∀𝑎 ∈ 𝑄 ∀𝑏 ∈ 𝑄 ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ 𝑄) |
| 70 | 62, 63, 7, 52, 64, 38 | islss 20932 |
. 2
⊢ (𝑄 ∈ 𝑆 ↔ (𝑄 ⊆ (Base‘𝑈) ∧ 𝑄 ≠ ∅ ∧ ∀𝑥 ∈
(Base‘(Scalar‘𝑈))∀𝑎 ∈ 𝑄 ∀𝑏 ∈ 𝑄 ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ 𝑄)) |
| 71 | 30, 51, 69, 70 | syl3anbrc 1344 |
1
⊢ (𝜑 → 𝑄 ∈ 𝑆) |