Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfr Structured version   Visualization version   GIF version

Theorem lcfr 41630
Description: Reconstruction of a subspace from a dual subspace of functionals with closed kernels. Our proof was suggested by Mario Carneiro, 20-Feb-2015. (Contributed by NM, 5-Mar-2015.)
Hypotheses
Ref Expression
lcfr.h 𝐻 = (LHyp‘𝐾)
lcfr.o = ((ocH‘𝐾)‘𝑊)
lcfr.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfr.s 𝑆 = (LSubSp‘𝑈)
lcfr.f 𝐹 = (LFnl‘𝑈)
lcfr.l 𝐿 = (LKer‘𝑈)
lcfr.d 𝐷 = (LDual‘𝑈)
lcfr.t 𝑇 = (LSubSp‘𝐷)
lcfr.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfr.q 𝑄 = 𝑔𝑅 ( ‘(𝐿𝑔))
lcfr.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfr.r (𝜑𝑅𝑇)
lcfr.rs (𝜑𝑅𝐶)
Assertion
Ref Expression
lcfr (𝜑𝑄𝑆)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑔,𝐿   ,𝑓,𝑔   𝑅,𝑔   𝑈,𝑓
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐶(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝑄(𝑓,𝑔)   𝑅(𝑓)   𝑆(𝑓,𝑔)   𝑇(𝑓,𝑔)   𝑈(𝑔)   𝐹(𝑔)   𝐻(𝑓,𝑔)   𝐾(𝑓,𝑔)   𝑊(𝑓,𝑔)

Proof of Theorem lcfr
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcfr.q . . . 4 𝑄 = 𝑔𝑅 ( ‘(𝐿𝑔))
2 2fveq3 6827 . . . . 5 (𝑔 = → ( ‘(𝐿𝑔)) = ( ‘(𝐿)))
32cbviunv 4989 . . . 4 𝑔𝑅 ( ‘(𝐿𝑔)) = 𝑅 ( ‘(𝐿))
41, 3eqtri 2754 . . 3 𝑄 = 𝑅 ( ‘(𝐿))
5 lcfr.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
65adantr 480 . . . . . 6 ((𝜑𝑅) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 eqid 2731 . . . . . . 7 (Base‘𝑈) = (Base‘𝑈)
8 lcfr.f . . . . . . 7 𝐹 = (LFnl‘𝑈)
9 lcfr.l . . . . . . 7 𝐿 = (LKer‘𝑈)
10 lcfr.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
11 lcfr.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
1210, 11, 5dvhlmod 41155 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
1312adantr 480 . . . . . . 7 ((𝜑𝑅) → 𝑈 ∈ LMod)
14 lcfr.r . . . . . . . . . 10 (𝜑𝑅𝑇)
15 eqid 2731 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
16 lcfr.t . . . . . . . . . . 11 𝑇 = (LSubSp‘𝐷)
1715, 16lssss 20870 . . . . . . . . . 10 (𝑅𝑇𝑅 ⊆ (Base‘𝐷))
1814, 17syl 17 . . . . . . . . 9 (𝜑𝑅 ⊆ (Base‘𝐷))
19 lcfr.d . . . . . . . . . 10 𝐷 = (LDual‘𝑈)
208, 19, 15, 12ldualvbase 39171 . . . . . . . . 9 (𝜑 → (Base‘𝐷) = 𝐹)
2118, 20sseqtrd 3971 . . . . . . . 8 (𝜑𝑅𝐹)
2221sselda 3934 . . . . . . 7 ((𝜑𝑅) → 𝐹)
237, 8, 9, 13, 22lkrssv 39141 . . . . . 6 ((𝜑𝑅) → (𝐿) ⊆ (Base‘𝑈))
24 lcfr.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
2510, 11, 7, 24dochssv 41400 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿) ⊆ (Base‘𝑈)) → ( ‘(𝐿)) ⊆ (Base‘𝑈))
266, 23, 25syl2anc 584 . . . . 5 ((𝜑𝑅) → ( ‘(𝐿)) ⊆ (Base‘𝑈))
2726ralrimiva 3124 . . . 4 (𝜑 → ∀𝑅 ( ‘(𝐿)) ⊆ (Base‘𝑈))
28 iunss 4994 . . . 4 ( 𝑅 ( ‘(𝐿)) ⊆ (Base‘𝑈) ↔ ∀𝑅 ( ‘(𝐿)) ⊆ (Base‘𝑈))
2927, 28sylibr 234 . . 3 (𝜑 𝑅 ( ‘(𝐿)) ⊆ (Base‘𝑈))
304, 29eqsstrid 3973 . 2 (𝜑𝑄 ⊆ (Base‘𝑈))
314a1i 11 . . 3 (𝜑𝑄 = 𝑅 ( ‘(𝐿)))
3219, 12lduallmod 39198 . . . . . . 7 (𝜑𝐷 ∈ LMod)
33 eqid 2731 . . . . . . . 8 (0g𝐷) = (0g𝐷)
3433, 16lss0cl 20881 . . . . . . 7 ((𝐷 ∈ LMod ∧ 𝑅𝑇) → (0g𝐷) ∈ 𝑅)
3532, 14, 34syl2anc 584 . . . . . 6 (𝜑 → (0g𝐷) ∈ 𝑅)
368, 19, 33, 12ldual0vcl 39196 . . . . . . . . 9 (𝜑 → (0g𝐷) ∈ 𝐹)
377, 8, 9, 12, 36lkrssv 39141 . . . . . . . 8 (𝜑 → (𝐿‘(0g𝐷)) ⊆ (Base‘𝑈))
38 lcfr.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑈)
3910, 11, 7, 38, 24dochlss 41399 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿‘(0g𝐷)) ⊆ (Base‘𝑈)) → ( ‘(𝐿‘(0g𝐷))) ∈ 𝑆)
405, 37, 39syl2anc 584 . . . . . . 7 (𝜑 → ( ‘(𝐿‘(0g𝐷))) ∈ 𝑆)
41 eqid 2731 . . . . . . . 8 (0g𝑈) = (0g𝑈)
4241, 38lss0cl 20881 . . . . . . 7 ((𝑈 ∈ LMod ∧ ( ‘(𝐿‘(0g𝐷))) ∈ 𝑆) → (0g𝑈) ∈ ( ‘(𝐿‘(0g𝐷))))
4312, 40, 42syl2anc 584 . . . . . 6 (𝜑 → (0g𝑈) ∈ ( ‘(𝐿‘(0g𝐷))))
44 2fveq3 6827 . . . . . . . 8 ( = (0g𝐷) → ( ‘(𝐿)) = ( ‘(𝐿‘(0g𝐷))))
4544eleq2d 2817 . . . . . . 7 ( = (0g𝐷) → ((0g𝑈) ∈ ( ‘(𝐿)) ↔ (0g𝑈) ∈ ( ‘(𝐿‘(0g𝐷)))))
4645rspcev 3577 . . . . . 6 (((0g𝐷) ∈ 𝑅 ∧ (0g𝑈) ∈ ( ‘(𝐿‘(0g𝐷)))) → ∃𝑅 (0g𝑈) ∈ ( ‘(𝐿)))
4735, 43, 46syl2anc 584 . . . . 5 (𝜑 → ∃𝑅 (0g𝑈) ∈ ( ‘(𝐿)))
48 eliun 4945 . . . . 5 ((0g𝑈) ∈ 𝑅 ( ‘(𝐿)) ↔ ∃𝑅 (0g𝑈) ∈ ( ‘(𝐿)))
4947, 48sylibr 234 . . . 4 (𝜑 → (0g𝑈) ∈ 𝑅 ( ‘(𝐿)))
5049ne0d 4292 . . 3 (𝜑 𝑅 ( ‘(𝐿)) ≠ ∅)
5131, 50eqnetrd 2995 . 2 (𝜑𝑄 ≠ ∅)
52 eqid 2731 . . . 4 (+g𝑈) = (+g𝑈)
53 lcfr.c . . . . 5 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
54 rabeq 3409 . . . . . 6 (𝐹 = (LFnl‘𝑈) → {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
558, 54ax-mp 5 . . . . 5 {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
5653, 55eqtri 2754 . . . 4 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
575adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎𝑄𝑏𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5814adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎𝑄𝑏𝑄)) → 𝑅𝑇)
59 lcfr.rs . . . . 5 (𝜑𝑅𝐶)
6059adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎𝑄𝑏𝑄)) → 𝑅𝐶)
61 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎𝑄𝑏𝑄)) → 𝑎𝑄)
62 eqid 2731 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
63 eqid 2731 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
64 eqid 2731 . . . . 5 ( ·𝑠𝑈) = ( ·𝑠𝑈)
65 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎𝑄𝑏𝑄)) → 𝑥 ∈ (Base‘(Scalar‘𝑈)))
6610, 24, 11, 7, 8, 9, 19, 16, 57, 58, 4, 61, 62, 63, 64, 65lcfrlem5 41591 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎𝑄𝑏𝑄)) → (𝑥( ·𝑠𝑈)𝑎) ∈ 𝑄)
67 simpr3 1197 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎𝑄𝑏𝑄)) → 𝑏𝑄)
6810, 24, 11, 52, 8, 9, 19, 16, 56, 4, 57, 58, 60, 66, 67lcfrlem42 41629 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑎𝑄𝑏𝑄)) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ 𝑄)
6968ralrimivvva 3178 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝑈))∀𝑎𝑄𝑏𝑄 ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ 𝑄)
7062, 63, 7, 52, 64, 38islss 20868 . 2 (𝑄𝑆 ↔ (𝑄 ⊆ (Base‘𝑈) ∧ 𝑄 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑈))∀𝑎𝑄𝑏𝑄 ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ 𝑄))
7130, 51, 69, 70syl3anbrc 1344 1 (𝜑𝑄𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3902  c0 4283   ciun 4941  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LModclmod 20794  LSubSpclss 20865  LFnlclfn 39102  LKerclk 39130  LDualcld 39168  HLchlt 39395  LHypclh 40029  DVecHcdvh 41123  ocHcoch 41392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-oppg 19259  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lcv 39064  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440
This theorem is referenced by:  mapdrval  41692  mapd1o  41693
  Copyright terms: Public domain W3C validator