![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcomf | Structured version Visualization version GIF version |
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
Ref | Expression |
---|---|
lcomf | ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcomf.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 2, 3, 4, 5 | lmodvscl 20898 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
7 | 6 | 3expb 1120 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
8 | 1, 7 | sylan 579 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
9 | lcomf.g | . 2 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
10 | lcomf.h | . 2 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
11 | lcomf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
12 | inidm 4248 | . 2 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
13 | 8, 9, 10, 11, 11, 12 | off 7732 | 1 ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-lmod 20882 |
This theorem is referenced by: lcomfsupp 20922 frlmup2 21842 islindf4 21881 fedgmullem2 33643 |
Copyright terms: Public domain | W3C validator |