MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcomf Structured version   Visualization version   GIF version

Theorem lcomf 20916
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
Assertion
Ref Expression
lcomf (𝜑 → (𝐺f · 𝐻):𝐼𝐵)

Proof of Theorem lcomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcomf.w . . 3 (𝜑𝑊 ∈ LMod)
2 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
5 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
62, 3, 4, 5lmodvscl 20893 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
763expb 1119 . . 3 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
81, 7sylan 580 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
9 lcomf.g . 2 (𝜑𝐺:𝐼𝐾)
10 lcomf.h . 2 (𝜑𝐻:𝐼𝐵)
11 lcomf.i . 2 (𝜑𝐼𝑉)
12 inidm 4235 . 2 (𝐼𝐼) = 𝐼
138, 9, 10, 11, 11, 12off 7715 1 (𝜑 → (𝐺f · 𝐻):𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  LModclmod 20875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-lmod 20877
This theorem is referenced by:  lcomfsupp  20917  frlmup2  21837  islindf4  21876  fedgmullem2  33658
  Copyright terms: Public domain W3C validator