MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcomf Structured version   Visualization version   GIF version

Theorem lcomf 20900
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
Assertion
Ref Expression
lcomf (𝜑 → (𝐺f · 𝐻):𝐼𝐵)

Proof of Theorem lcomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcomf.w . . 3 (𝜑𝑊 ∈ LMod)
2 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
5 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
62, 3, 4, 5lmodvscl 20877 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
763expb 1120 . . 3 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
81, 7sylan 580 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
9 lcomf.g . 2 (𝜑𝐺:𝐼𝐾)
10 lcomf.h . 2 (𝜑𝐻:𝐼𝐵)
11 lcomf.i . 2 (𝜑𝐼𝑉)
12 inidm 4226 . 2 (𝐼𝐼) = 𝐼
138, 9, 10, 11, 11, 12off 7716 1 (𝜑 → (𝐺f · 𝐻):𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  Basecbs 17248  Scalarcsca 17301   ·𝑠 cvsca 17302  LModclmod 20859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-lmod 20861
This theorem is referenced by:  lcomfsupp  20901  frlmup2  21820  islindf4  21859  fedgmullem2  33682
  Copyright terms: Public domain W3C validator