Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcomf | Structured version Visualization version GIF version |
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
Ref | Expression |
---|---|
lcomf | ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcomf.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 2, 3, 4, 5 | lmodvscl 20140 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
7 | 6 | 3expb 1119 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
8 | 1, 7 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
9 | lcomf.g | . 2 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
10 | lcomf.h | . 2 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
11 | lcomf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
12 | inidm 4152 | . 2 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
13 | 8, 9, 10, 11, 11, 12 | off 7551 | 1 ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 LModclmod 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-lmod 20125 |
This theorem is referenced by: lcomfsupp 20163 frlmup2 21006 islindf4 21045 fedgmullem2 31711 |
Copyright terms: Public domain | W3C validator |