Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcomf | Structured version Visualization version GIF version |
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
Ref | Expression |
---|---|
lcomf | ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcomf.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 2, 3, 4, 5 | lmodvscl 20246 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
7 | 6 | 3expb 1120 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
8 | 1, 7 | sylan 581 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
9 | lcomf.g | . 2 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
10 | lcomf.h | . 2 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
11 | lcomf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
12 | inidm 4170 | . 2 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
13 | 8, 9, 10, 11, 11, 12 | off 7618 | 1 ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ∘f cof 7598 Basecbs 17010 Scalarcsca 17063 ·𝑠 cvsca 17064 LModclmod 20229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-lmod 20231 |
This theorem is referenced by: lcomfsupp 20269 frlmup2 21112 islindf4 21151 fedgmullem2 32007 |
Copyright terms: Public domain | W3C validator |