| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcomf | Structured version Visualization version GIF version | ||
| Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
| lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
| lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
| lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
| lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lcomf | ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomf.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | 2, 3, 4, 5 | lmodvscl 20820 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
| 7 | 6 | 3expb 1120 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
| 8 | 1, 7 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
| 9 | lcomf.g | . 2 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
| 10 | lcomf.h | . 2 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
| 11 | lcomf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 12 | inidm 4176 | . 2 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 13 | 8, 9, 10, 11, 11, 12 | off 7637 | 1 ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 Basecbs 17127 Scalarcsca 17171 ·𝑠 cvsca 17172 LModclmod 20802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-lmod 20804 |
| This theorem is referenced by: lcomfsupp 20844 frlmup2 21745 islindf4 21784 fedgmullem2 33715 |
| Copyright terms: Public domain | W3C validator |