MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcomfsupp Structured version   Visualization version   GIF version

Theorem lcomfsupp 20815
Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
lcomfsupp.z 0 = (0g𝑊)
lcomfsupp.y 𝑌 = (0g𝐹)
lcomfsupp.j (𝜑𝐺 finSupp 𝑌)
Assertion
Ref Expression
lcomfsupp (𝜑 → (𝐺f · 𝐻) finSupp 0 )

Proof of Theorem lcomfsupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lcomfsupp.j . . . 4 (𝜑𝐺 finSupp 𝑌)
21fsuppimpd 9327 . . 3 (𝜑 → (𝐺 supp 𝑌) ∈ Fin)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
5 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
6 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
7 lcomf.w . . . . 5 (𝜑𝑊 ∈ LMod)
8 lcomf.g . . . . 5 (𝜑𝐺:𝐼𝐾)
9 lcomf.h . . . . 5 (𝜑𝐻:𝐼𝐵)
10 lcomf.i . . . . 5 (𝜑𝐼𝑉)
113, 4, 5, 6, 7, 8, 9, 10lcomf 20814 . . . 4 (𝜑 → (𝐺f · 𝐻):𝐼𝐵)
12 eldifi 4097 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌)) → 𝑥𝐼)
138ffnd 6692 . . . . . . . 8 (𝜑𝐺 Fn 𝐼)
1413adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 Fn 𝐼)
159ffnd 6692 . . . . . . . 8 (𝜑𝐻 Fn 𝐼)
1615adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐻 Fn 𝐼)
1710adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
18 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
19 fnfvof 7673 . . . . . . 7 (((𝐺 Fn 𝐼𝐻 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
2014, 16, 17, 18, 19syl22anc 838 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
2112, 20sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
22 ssidd 3973 . . . . . . 7 (𝜑 → (𝐺 supp 𝑌) ⊆ (𝐺 supp 𝑌))
23 lcomfsupp.y . . . . . . . . 9 𝑌 = (0g𝐹)
2423fvexi 6875 . . . . . . . 8 𝑌 ∈ V
2524a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
268, 22, 10, 25suppssr 8177 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝐺𝑥) = 𝑌)
2726oveq1d 7405 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺𝑥) · (𝐻𝑥)) = (𝑌 · (𝐻𝑥)))
289ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ 𝐵)
29 lcomfsupp.z . . . . . . . 8 0 = (0g𝑊)
306, 3, 5, 23, 29lmod0vs 20808 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐻𝑥) ∈ 𝐵) → (𝑌 · (𝐻𝑥)) = 0 )
317, 28, 30syl2an2r 685 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 · (𝐻𝑥)) = 0 )
3212, 31sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝑌 · (𝐻𝑥)) = 0 )
3321, 27, 323eqtrd 2769 . . . 4 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺f · 𝐻)‘𝑥) = 0 )
3411, 33suppss 8176 . . 3 (𝜑 → ((𝐺f · 𝐻) supp 0 ) ⊆ (𝐺 supp 𝑌))
352, 34ssfid 9219 . 2 (𝜑 → ((𝐺f · 𝐻) supp 0 ) ∈ Fin)
3613, 15, 10, 10offun 7670 . . 3 (𝜑 → Fun (𝐺f · 𝐻))
37 ovexd 7425 . . 3 (𝜑 → (𝐺f · 𝐻) ∈ V)
3829fvexi 6875 . . . 4 0 ∈ V
3938a1i 11 . . 3 (𝜑0 ∈ V)
40 funisfsupp 9325 . . 3 ((Fun (𝐺f · 𝐻) ∧ (𝐺f · 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐺f · 𝐻) finSupp 0 ↔ ((𝐺f · 𝐻) supp 0 ) ∈ Fin))
4136, 37, 39, 40syl3anc 1373 . 2 (𝜑 → ((𝐺f · 𝐻) finSupp 0 ↔ ((𝐺f · 𝐻) supp 0 ) ∈ Fin))
4235, 41mpbird 257 1 (𝜑 → (𝐺f · 𝐻) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914   class class class wbr 5110  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654   supp csupp 8142  Fincfn 8921   finSupp cfsupp 9319  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  LModclmod 20773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-supp 8143  df-1o 8437  df-en 8922  df-fin 8925  df-fsupp 9320  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-ring 20151  df-lmod 20775
This theorem is referenced by:  islindf4  21754  fedgmullem2  33633
  Copyright terms: Public domain W3C validator