MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcomfsupp Structured version   Visualization version   GIF version

Theorem lcomfsupp 20900
Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
lcomfsupp.z 0 = (0g𝑊)
lcomfsupp.y 𝑌 = (0g𝐹)
lcomfsupp.j (𝜑𝐺 finSupp 𝑌)
Assertion
Ref Expression
lcomfsupp (𝜑 → (𝐺f · 𝐻) finSupp 0 )

Proof of Theorem lcomfsupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lcomfsupp.j . . . 4 (𝜑𝐺 finSupp 𝑌)
21fsuppimpd 9409 . . 3 (𝜑 → (𝐺 supp 𝑌) ∈ Fin)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
5 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
6 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
7 lcomf.w . . . . 5 (𝜑𝑊 ∈ LMod)
8 lcomf.g . . . . 5 (𝜑𝐺:𝐼𝐾)
9 lcomf.h . . . . 5 (𝜑𝐻:𝐼𝐵)
10 lcomf.i . . . . 5 (𝜑𝐼𝑉)
113, 4, 5, 6, 7, 8, 9, 10lcomf 20899 . . . 4 (𝜑 → (𝐺f · 𝐻):𝐼𝐵)
12 eldifi 4131 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌)) → 𝑥𝐼)
138ffnd 6737 . . . . . . . 8 (𝜑𝐺 Fn 𝐼)
1413adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 Fn 𝐼)
159ffnd 6737 . . . . . . . 8 (𝜑𝐻 Fn 𝐼)
1615adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐻 Fn 𝐼)
1710adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
18 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
19 fnfvof 7714 . . . . . . 7 (((𝐺 Fn 𝐼𝐻 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
2014, 16, 17, 18, 19syl22anc 839 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
2112, 20sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
22 ssidd 4007 . . . . . . 7 (𝜑 → (𝐺 supp 𝑌) ⊆ (𝐺 supp 𝑌))
23 lcomfsupp.y . . . . . . . . 9 𝑌 = (0g𝐹)
2423fvexi 6920 . . . . . . . 8 𝑌 ∈ V
2524a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
268, 22, 10, 25suppssr 8220 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝐺𝑥) = 𝑌)
2726oveq1d 7446 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺𝑥) · (𝐻𝑥)) = (𝑌 · (𝐻𝑥)))
289ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ 𝐵)
29 lcomfsupp.z . . . . . . . 8 0 = (0g𝑊)
306, 3, 5, 23, 29lmod0vs 20893 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐻𝑥) ∈ 𝐵) → (𝑌 · (𝐻𝑥)) = 0 )
317, 28, 30syl2an2r 685 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 · (𝐻𝑥)) = 0 )
3212, 31sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝑌 · (𝐻𝑥)) = 0 )
3321, 27, 323eqtrd 2781 . . . 4 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺f · 𝐻)‘𝑥) = 0 )
3411, 33suppss 8219 . . 3 (𝜑 → ((𝐺f · 𝐻) supp 0 ) ⊆ (𝐺 supp 𝑌))
352, 34ssfid 9301 . 2 (𝜑 → ((𝐺f · 𝐻) supp 0 ) ∈ Fin)
3613, 15, 10, 10offun 7711 . . 3 (𝜑 → Fun (𝐺f · 𝐻))
37 ovexd 7466 . . 3 (𝜑 → (𝐺f · 𝐻) ∈ V)
3829fvexi 6920 . . . 4 0 ∈ V
3938a1i 11 . . 3 (𝜑0 ∈ V)
40 funisfsupp 9407 . . 3 ((Fun (𝐺f · 𝐻) ∧ (𝐺f · 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐺f · 𝐻) finSupp 0 ↔ ((𝐺f · 𝐻) supp 0 ) ∈ Fin))
4136, 37, 39, 40syl3anc 1373 . 2 (𝜑 → ((𝐺f · 𝐻) finSupp 0 ↔ ((𝐺f · 𝐻) supp 0 ) ∈ Fin))
4235, 41mpbird 257 1 (𝜑 → (𝐺f · 𝐻) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948   class class class wbr 5143  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695   supp csupp 8185  Fincfn 8985   finSupp cfsupp 9401  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  LModclmod 20858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-supp 8186  df-1o 8506  df-en 8986  df-fin 8989  df-fsupp 9402  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-ring 20232  df-lmod 20860
This theorem is referenced by:  islindf4  21858  fedgmullem2  33681
  Copyright terms: Public domain W3C validator