| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcomfsupp | Structured version Visualization version GIF version | ||
| Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.) |
| Ref | Expression |
|---|---|
| lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
| lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
| lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
| lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
| lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| lcomfsupp.z | ⊢ 0 = (0g‘𝑊) |
| lcomfsupp.y | ⊢ 𝑌 = (0g‘𝐹) |
| lcomfsupp.j | ⊢ (𝜑 → 𝐺 finSupp 𝑌) |
| Ref | Expression |
|---|---|
| lcomfsupp | ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomfsupp.j | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑌) | |
| 2 | 1 | fsuppimpd 9381 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑌) ∈ Fin) |
| 3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 7 | lcomf.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lcomf.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
| 9 | lcomf.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
| 10 | lcomf.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | lcomf 20858 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
| 12 | eldifi 4106 | . . . . . 6 ⊢ (𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌)) → 𝑥 ∈ 𝐼) | |
| 13 | 8 | ffnd 6707 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 Fn 𝐼) |
| 15 | 9 | ffnd 6707 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐻 Fn 𝐼) |
| 17 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
| 19 | fnfvof 7688 | . . . . . . 7 ⊢ (((𝐺 Fn 𝐼 ∧ 𝐻 Fn 𝐼) ∧ (𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼)) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) | |
| 20 | 14, 16, 17, 18, 19 | syl22anc 838 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) |
| 21 | 12, 20 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) |
| 22 | ssidd 3982 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 𝑌) ⊆ (𝐺 supp 𝑌)) | |
| 23 | lcomfsupp.y | . . . . . . . . 9 ⊢ 𝑌 = (0g‘𝐹) | |
| 24 | 23 | fvexi 6890 | . . . . . . . 8 ⊢ 𝑌 ∈ V |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
| 26 | 8, 22, 10, 25 | suppssr 8194 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝐺‘𝑥) = 𝑌) |
| 27 | 26 | oveq1d 7420 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺‘𝑥) · (𝐻‘𝑥)) = (𝑌 · (𝐻‘𝑥))) |
| 28 | 9 | ffvelcdmda 7074 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ 𝐵) |
| 29 | lcomfsupp.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 30 | 6, 3, 5, 23, 29 | lmod0vs 20852 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝐻‘𝑥) ∈ 𝐵) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 31 | 7, 28, 30 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 32 | 12, 31 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 33 | 21, 27, 32 | 3eqtrd 2774 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺 ∘f · 𝐻)‘𝑥) = 0 ) |
| 34 | 11, 33 | suppss 8193 | . . 3 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) supp 0 ) ⊆ (𝐺 supp 𝑌)) |
| 35 | 2, 34 | ssfid 9273 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin) |
| 36 | 13, 15, 10, 10 | offun 7685 | . . 3 ⊢ (𝜑 → Fun (𝐺 ∘f · 𝐻)) |
| 37 | ovexd 7440 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐻) ∈ V) | |
| 38 | 29 | fvexi 6890 | . . . 4 ⊢ 0 ∈ V |
| 39 | 38 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 40 | funisfsupp 9379 | . . 3 ⊢ ((Fun (𝐺 ∘f · 𝐻) ∧ (𝐺 ∘f · 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐺 ∘f · 𝐻) finSupp 0 ↔ ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin)) | |
| 41 | 36, 37, 39, 40 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) finSupp 0 ↔ ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin)) |
| 42 | 35, 41 | mpbird 257 | 1 ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 class class class wbr 5119 Fun wfun 6525 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 supp csupp 8159 Fincfn 8959 finSupp cfsupp 9373 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 0gc0g 17453 LModclmod 20817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-supp 8160 df-1o 8480 df-en 8960 df-fin 8963 df-fsupp 9374 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ring 20195 df-lmod 20819 |
| This theorem is referenced by: islindf4 21798 fedgmullem2 33670 |
| Copyright terms: Public domain | W3C validator |