| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcomfsupp | Structured version Visualization version GIF version | ||
| Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.) |
| Ref | Expression |
|---|---|
| lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
| lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
| lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
| lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
| lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| lcomfsupp.z | ⊢ 0 = (0g‘𝑊) |
| lcomfsupp.y | ⊢ 𝑌 = (0g‘𝐹) |
| lcomfsupp.j | ⊢ (𝜑 → 𝐺 finSupp 𝑌) |
| Ref | Expression |
|---|---|
| lcomfsupp | ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomfsupp.j | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑌) | |
| 2 | 1 | fsuppimpd 9248 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑌) ∈ Fin) |
| 3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 7 | lcomf.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lcomf.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
| 9 | lcomf.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
| 10 | lcomf.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | lcomf 20829 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
| 12 | eldifi 4076 | . . . . . 6 ⊢ (𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌)) → 𝑥 ∈ 𝐼) | |
| 13 | 8 | ffnd 6647 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 Fn 𝐼) |
| 15 | 9 | ffnd 6647 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐻 Fn 𝐼) |
| 17 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
| 19 | fnfvof 7622 | . . . . . . 7 ⊢ (((𝐺 Fn 𝐼 ∧ 𝐻 Fn 𝐼) ∧ (𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼)) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) | |
| 20 | 14, 16, 17, 18, 19 | syl22anc 838 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) |
| 21 | 12, 20 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) |
| 22 | ssidd 3953 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 𝑌) ⊆ (𝐺 supp 𝑌)) | |
| 23 | lcomfsupp.y | . . . . . . . . 9 ⊢ 𝑌 = (0g‘𝐹) | |
| 24 | 23 | fvexi 6831 | . . . . . . . 8 ⊢ 𝑌 ∈ V |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
| 26 | 8, 22, 10, 25 | suppssr 8120 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝐺‘𝑥) = 𝑌) |
| 27 | 26 | oveq1d 7356 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺‘𝑥) · (𝐻‘𝑥)) = (𝑌 · (𝐻‘𝑥))) |
| 28 | 9 | ffvelcdmda 7012 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ 𝐵) |
| 29 | lcomfsupp.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 30 | 6, 3, 5, 23, 29 | lmod0vs 20823 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝐻‘𝑥) ∈ 𝐵) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 31 | 7, 28, 30 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 32 | 12, 31 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 33 | 21, 27, 32 | 3eqtrd 2770 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺 ∘f · 𝐻)‘𝑥) = 0 ) |
| 34 | 11, 33 | suppss 8119 | . . 3 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) supp 0 ) ⊆ (𝐺 supp 𝑌)) |
| 35 | 2, 34 | ssfid 9148 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin) |
| 36 | 13, 15, 10, 10 | offun 7619 | . . 3 ⊢ (𝜑 → Fun (𝐺 ∘f · 𝐻)) |
| 37 | ovexd 7376 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐻) ∈ V) | |
| 38 | 29 | fvexi 6831 | . . . 4 ⊢ 0 ∈ V |
| 39 | 38 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 40 | funisfsupp 9246 | . . 3 ⊢ ((Fun (𝐺 ∘f · 𝐻) ∧ (𝐺 ∘f · 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐺 ∘f · 𝐻) finSupp 0 ↔ ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin)) | |
| 41 | 36, 37, 39, 40 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) finSupp 0 ↔ ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin)) |
| 42 | 35, 41 | mpbird 257 | 1 ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 class class class wbr 5086 Fun wfun 6470 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 0gc0g 17338 LModclmod 20788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-supp 8086 df-1o 8380 df-en 8865 df-fin 8868 df-fsupp 9241 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-ring 20148 df-lmod 20790 |
| This theorem is referenced by: islindf4 21770 fedgmullem2 33635 |
| Copyright terms: Public domain | W3C validator |