MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcomfsupp Structured version   Visualization version   GIF version

Theorem lcomfsupp 20078
Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
lcomfsupp.z 0 = (0g𝑊)
lcomfsupp.y 𝑌 = (0g𝐹)
lcomfsupp.j (𝜑𝐺 finSupp 𝑌)
Assertion
Ref Expression
lcomfsupp (𝜑 → (𝐺f · 𝐻) finSupp 0 )

Proof of Theorem lcomfsupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lcomfsupp.j . . . 4 (𝜑𝐺 finSupp 𝑌)
21fsuppimpd 9065 . . 3 (𝜑 → (𝐺 supp 𝑌) ∈ Fin)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
5 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
6 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
7 lcomf.w . . . . 5 (𝜑𝑊 ∈ LMod)
8 lcomf.g . . . . 5 (𝜑𝐺:𝐼𝐾)
9 lcomf.h . . . . 5 (𝜑𝐻:𝐼𝐵)
10 lcomf.i . . . . 5 (𝜑𝐼𝑉)
113, 4, 5, 6, 7, 8, 9, 10lcomf 20077 . . . 4 (𝜑 → (𝐺f · 𝐻):𝐼𝐵)
12 eldifi 4057 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌)) → 𝑥𝐼)
138ffnd 6585 . . . . . . . 8 (𝜑𝐺 Fn 𝐼)
1413adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 Fn 𝐼)
159ffnd 6585 . . . . . . . 8 (𝜑𝐻 Fn 𝐼)
1615adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐻 Fn 𝐼)
1710adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
18 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
19 fnfvof 7528 . . . . . . 7 (((𝐺 Fn 𝐼𝐻 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
2014, 16, 17, 18, 19syl22anc 835 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
2112, 20sylan2 592 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
22 ssidd 3940 . . . . . . 7 (𝜑 → (𝐺 supp 𝑌) ⊆ (𝐺 supp 𝑌))
23 lcomfsupp.y . . . . . . . . 9 𝑌 = (0g𝐹)
2423fvexi 6770 . . . . . . . 8 𝑌 ∈ V
2524a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
268, 22, 10, 25suppssr 7983 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝐺𝑥) = 𝑌)
2726oveq1d 7270 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺𝑥) · (𝐻𝑥)) = (𝑌 · (𝐻𝑥)))
289ffvelrnda 6943 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ 𝐵)
29 lcomfsupp.z . . . . . . . 8 0 = (0g𝑊)
306, 3, 5, 23, 29lmod0vs 20071 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐻𝑥) ∈ 𝐵) → (𝑌 · (𝐻𝑥)) = 0 )
317, 28, 30syl2an2r 681 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 · (𝐻𝑥)) = 0 )
3212, 31sylan2 592 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝑌 · (𝐻𝑥)) = 0 )
3321, 27, 323eqtrd 2782 . . . 4 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺f · 𝐻)‘𝑥) = 0 )
3411, 33suppss 7981 . . 3 (𝜑 → ((𝐺f · 𝐻) supp 0 ) ⊆ (𝐺 supp 𝑌))
352, 34ssfid 8971 . 2 (𝜑 → ((𝐺f · 𝐻) supp 0 ) ∈ Fin)
3613, 15, 10, 10offun 7525 . . 3 (𝜑 → Fun (𝐺f · 𝐻))
37 ovexd 7290 . . 3 (𝜑 → (𝐺f · 𝐻) ∈ V)
3829fvexi 6770 . . . 4 0 ∈ V
3938a1i 11 . . 3 (𝜑0 ∈ V)
40 funisfsupp 9063 . . 3 ((Fun (𝐺f · 𝐻) ∧ (𝐺f · 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐺f · 𝐻) finSupp 0 ↔ ((𝐺f · 𝐻) supp 0 ) ∈ Fin))
4136, 37, 39, 40syl3anc 1369 . 2 (𝜑 → ((𝐺f · 𝐻) finSupp 0 ↔ ((𝐺f · 𝐻) supp 0 ) ∈ Fin))
4235, 41mpbird 256 1 (𝜑 → (𝐺f · 𝐻) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880   class class class wbr 5070  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-supp 7949  df-1o 8267  df-en 8692  df-fin 8695  df-fsupp 9059  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ring 19700  df-lmod 20040
This theorem is referenced by:  islindf4  20955  fedgmullem2  31613
  Copyright terms: Public domain W3C validator