| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcomfsupp | Structured version Visualization version GIF version | ||
| Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.) |
| Ref | Expression |
|---|---|
| lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
| lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
| lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
| lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
| lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| lcomfsupp.z | ⊢ 0 = (0g‘𝑊) |
| lcomfsupp.y | ⊢ 𝑌 = (0g‘𝐹) |
| lcomfsupp.j | ⊢ (𝜑 → 𝐺 finSupp 𝑌) |
| Ref | Expression |
|---|---|
| lcomfsupp | ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomfsupp.j | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑌) | |
| 2 | 1 | fsuppimpd 9264 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑌) ∈ Fin) |
| 3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 7 | lcomf.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lcomf.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
| 9 | lcomf.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
| 10 | lcomf.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | lcomf 20843 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
| 12 | eldifi 4080 | . . . . . 6 ⊢ (𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌)) → 𝑥 ∈ 𝐼) | |
| 13 | 8 | ffnd 6660 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 Fn 𝐼) |
| 15 | 9 | ffnd 6660 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐻 Fn 𝐼) |
| 17 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
| 19 | fnfvof 7636 | . . . . . . 7 ⊢ (((𝐺 Fn 𝐼 ∧ 𝐻 Fn 𝐼) ∧ (𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼)) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) | |
| 20 | 14, 16, 17, 18, 19 | syl22anc 838 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) |
| 21 | 12, 20 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) |
| 22 | ssidd 3954 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 𝑌) ⊆ (𝐺 supp 𝑌)) | |
| 23 | lcomfsupp.y | . . . . . . . . 9 ⊢ 𝑌 = (0g‘𝐹) | |
| 24 | 23 | fvexi 6845 | . . . . . . . 8 ⊢ 𝑌 ∈ V |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
| 26 | 8, 22, 10, 25 | suppssr 8134 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝐺‘𝑥) = 𝑌) |
| 27 | 26 | oveq1d 7370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺‘𝑥) · (𝐻‘𝑥)) = (𝑌 · (𝐻‘𝑥))) |
| 28 | 9 | ffvelcdmda 7026 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ 𝐵) |
| 29 | lcomfsupp.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 30 | 6, 3, 5, 23, 29 | lmod0vs 20837 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝐻‘𝑥) ∈ 𝐵) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 31 | 7, 28, 30 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 32 | 12, 31 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 33 | 21, 27, 32 | 3eqtrd 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺 ∘f · 𝐻)‘𝑥) = 0 ) |
| 34 | 11, 33 | suppss 8133 | . . 3 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) supp 0 ) ⊆ (𝐺 supp 𝑌)) |
| 35 | 2, 34 | ssfid 9164 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin) |
| 36 | 13, 15, 10, 10 | offun 7633 | . . 3 ⊢ (𝜑 → Fun (𝐺 ∘f · 𝐻)) |
| 37 | ovexd 7390 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐻) ∈ V) | |
| 38 | 29 | fvexi 6845 | . . . 4 ⊢ 0 ∈ V |
| 39 | 38 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 40 | funisfsupp 9262 | . . 3 ⊢ ((Fun (𝐺 ∘f · 𝐻) ∧ (𝐺 ∘f · 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐺 ∘f · 𝐻) finSupp 0 ↔ ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin)) | |
| 41 | 36, 37, 39, 40 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) finSupp 0 ↔ ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin)) |
| 42 | 35, 41 | mpbird 257 | 1 ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 class class class wbr 5095 Fun wfun 6483 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 supp csupp 8099 Fincfn 8879 finSupp cfsupp 9256 Basecbs 17127 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 LModclmod 20802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-supp 8100 df-1o 8394 df-en 8880 df-fin 8883 df-fsupp 9257 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-ring 20161 df-lmod 20804 |
| This theorem is referenced by: islindf4 21784 fedgmullem2 33715 |
| Copyright terms: Public domain | W3C validator |