| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcomfsupp | Structured version Visualization version GIF version | ||
| Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.) |
| Ref | Expression |
|---|---|
| lcomf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lcomf.k | ⊢ 𝐾 = (Base‘𝐹) |
| lcomf.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lcomf.b | ⊢ 𝐵 = (Base‘𝑊) |
| lcomf.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcomf.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) |
| lcomf.h | ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) |
| lcomf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| lcomfsupp.z | ⊢ 0 = (0g‘𝑊) |
| lcomfsupp.y | ⊢ 𝑌 = (0g‘𝐹) |
| lcomfsupp.j | ⊢ (𝜑 → 𝐺 finSupp 𝑌) |
| Ref | Expression |
|---|---|
| lcomfsupp | ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomfsupp.j | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑌) | |
| 2 | 1 | fsuppimpd 9296 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑌) ∈ Fin) |
| 3 | lcomf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | lcomf.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | lcomf.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | lcomf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 7 | lcomf.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lcomf.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐼⟶𝐾) | |
| 9 | lcomf.h | . . . . 5 ⊢ (𝜑 → 𝐻:𝐼⟶𝐵) | |
| 10 | lcomf.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | lcomf 20783 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐻):𝐼⟶𝐵) |
| 12 | eldifi 4090 | . . . . . 6 ⊢ (𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌)) → 𝑥 ∈ 𝐼) | |
| 13 | 8 | ffnd 6671 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 Fn 𝐼) |
| 15 | 9 | ffnd 6671 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 Fn 𝐼) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐻 Fn 𝐼) |
| 17 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | |
| 19 | fnfvof 7650 | . . . . . . 7 ⊢ (((𝐺 Fn 𝐼 ∧ 𝐻 Fn 𝐼) ∧ (𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼)) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) | |
| 20 | 14, 16, 17, 18, 19 | syl22anc 838 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) |
| 21 | 12, 20 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺 ∘f · 𝐻)‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑥))) |
| 22 | ssidd 3967 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 𝑌) ⊆ (𝐺 supp 𝑌)) | |
| 23 | lcomfsupp.y | . . . . . . . . 9 ⊢ 𝑌 = (0g‘𝐹) | |
| 24 | 23 | fvexi 6854 | . . . . . . . 8 ⊢ 𝑌 ∈ V |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
| 26 | 8, 22, 10, 25 | suppssr 8151 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝐺‘𝑥) = 𝑌) |
| 27 | 26 | oveq1d 7384 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺‘𝑥) · (𝐻‘𝑥)) = (𝑌 · (𝐻‘𝑥))) |
| 28 | 9 | ffvelcdmda 7038 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ 𝐵) |
| 29 | lcomfsupp.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑊) | |
| 30 | 6, 3, 5, 23, 29 | lmod0vs 20777 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝐻‘𝑥) ∈ 𝐵) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 31 | 7, 28, 30 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 32 | 12, 31 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝑌 · (𝐻‘𝑥)) = 0 ) |
| 33 | 21, 27, 32 | 3eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺 ∘f · 𝐻)‘𝑥) = 0 ) |
| 34 | 11, 33 | suppss 8150 | . . 3 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) supp 0 ) ⊆ (𝐺 supp 𝑌)) |
| 35 | 2, 34 | ssfid 9188 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin) |
| 36 | 13, 15, 10, 10 | offun 7647 | . . 3 ⊢ (𝜑 → Fun (𝐺 ∘f · 𝐻)) |
| 37 | ovexd 7404 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐻) ∈ V) | |
| 38 | 29 | fvexi 6854 | . . . 4 ⊢ 0 ∈ V |
| 39 | 38 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 40 | funisfsupp 9294 | . . 3 ⊢ ((Fun (𝐺 ∘f · 𝐻) ∧ (𝐺 ∘f · 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐺 ∘f · 𝐻) finSupp 0 ↔ ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin)) | |
| 41 | 36, 37, 39, 40 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · 𝐻) finSupp 0 ↔ ((𝐺 ∘f · 𝐻) supp 0 ) ∈ Fin)) |
| 42 | 35, 41 | mpbird 257 | 1 ⊢ (𝜑 → (𝐺 ∘f · 𝐻) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 class class class wbr 5102 Fun wfun 6493 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 supp csupp 8116 Fincfn 8895 finSupp cfsupp 9288 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 LModclmod 20742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-supp 8117 df-1o 8411 df-en 8896 df-fin 8899 df-fsupp 9289 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-ring 20120 df-lmod 20744 |
| This theorem is referenced by: islindf4 21723 fedgmullem2 33599 |
| Copyright terms: Public domain | W3C validator |