MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcomfsupp Structured version   Visualization version   GIF version

Theorem lcomfsupp 20868
Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by AV, 15-Jul-2019.)
Hypotheses
Ref Expression
lcomf.f 𝐹 = (Scalar‘𝑊)
lcomf.k 𝐾 = (Base‘𝐹)
lcomf.s · = ( ·𝑠𝑊)
lcomf.b 𝐵 = (Base‘𝑊)
lcomf.w (𝜑𝑊 ∈ LMod)
lcomf.g (𝜑𝐺:𝐼𝐾)
lcomf.h (𝜑𝐻:𝐼𝐵)
lcomf.i (𝜑𝐼𝑉)
lcomfsupp.z 0 = (0g𝑊)
lcomfsupp.y 𝑌 = (0g𝐹)
lcomfsupp.j (𝜑𝐺 finSupp 𝑌)
Assertion
Ref Expression
lcomfsupp (𝜑 → (𝐺f · 𝐻) finSupp 0 )

Proof of Theorem lcomfsupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lcomfsupp.j . . . 4 (𝜑𝐺 finSupp 𝑌)
21fsuppimpd 9391 . . 3 (𝜑 → (𝐺 supp 𝑌) ∈ Fin)
3 lcomf.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 lcomf.k . . . . 5 𝐾 = (Base‘𝐹)
5 lcomf.s . . . . 5 · = ( ·𝑠𝑊)
6 lcomf.b . . . . 5 𝐵 = (Base‘𝑊)
7 lcomf.w . . . . 5 (𝜑𝑊 ∈ LMod)
8 lcomf.g . . . . 5 (𝜑𝐺:𝐼𝐾)
9 lcomf.h . . . . 5 (𝜑𝐻:𝐼𝐵)
10 lcomf.i . . . . 5 (𝜑𝐼𝑉)
113, 4, 5, 6, 7, 8, 9, 10lcomf 20867 . . . 4 (𝜑 → (𝐺f · 𝐻):𝐼𝐵)
12 eldifi 4111 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌)) → 𝑥𝐼)
138ffnd 6717 . . . . . . . 8 (𝜑𝐺 Fn 𝐼)
1413adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 Fn 𝐼)
159ffnd 6717 . . . . . . . 8 (𝜑𝐻 Fn 𝐼)
1615adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐻 Fn 𝐼)
1710adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
18 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
19 fnfvof 7696 . . . . . . 7 (((𝐺 Fn 𝐼𝐻 Fn 𝐼) ∧ (𝐼𝑉𝑥𝐼)) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
2014, 16, 17, 18, 19syl22anc 838 . . . . . 6 ((𝜑𝑥𝐼) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
2112, 20sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺f · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
22 ssidd 3987 . . . . . . 7 (𝜑 → (𝐺 supp 𝑌) ⊆ (𝐺 supp 𝑌))
23 lcomfsupp.y . . . . . . . . 9 𝑌 = (0g𝐹)
2423fvexi 6900 . . . . . . . 8 𝑌 ∈ V
2524a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
268, 22, 10, 25suppssr 8202 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝐺𝑥) = 𝑌)
2726oveq1d 7428 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺𝑥) · (𝐻𝑥)) = (𝑌 · (𝐻𝑥)))
289ffvelcdmda 7084 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ 𝐵)
29 lcomfsupp.z . . . . . . . 8 0 = (0g𝑊)
306, 3, 5, 23, 29lmod0vs 20861 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐻𝑥) ∈ 𝐵) → (𝑌 · (𝐻𝑥)) = 0 )
317, 28, 30syl2an2r 685 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 · (𝐻𝑥)) = 0 )
3212, 31sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → (𝑌 · (𝐻𝑥)) = 0 )
3321, 27, 323eqtrd 2773 . . . 4 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐺 supp 𝑌))) → ((𝐺f · 𝐻)‘𝑥) = 0 )
3411, 33suppss 8201 . . 3 (𝜑 → ((𝐺f · 𝐻) supp 0 ) ⊆ (𝐺 supp 𝑌))
352, 34ssfid 9283 . 2 (𝜑 → ((𝐺f · 𝐻) supp 0 ) ∈ Fin)
3613, 15, 10, 10offun 7693 . . 3 (𝜑 → Fun (𝐺f · 𝐻))
37 ovexd 7448 . . 3 (𝜑 → (𝐺f · 𝐻) ∈ V)
3829fvexi 6900 . . . 4 0 ∈ V
3938a1i 11 . . 3 (𝜑0 ∈ V)
40 funisfsupp 9389 . . 3 ((Fun (𝐺f · 𝐻) ∧ (𝐺f · 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐺f · 𝐻) finSupp 0 ↔ ((𝐺f · 𝐻) supp 0 ) ∈ Fin))
4136, 37, 39, 40syl3anc 1372 . 2 (𝜑 → ((𝐺f · 𝐻) finSupp 0 ↔ ((𝐺f · 𝐻) supp 0 ) ∈ Fin))
4235, 41mpbird 257 1 (𝜑 → (𝐺f · 𝐻) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cdif 3928   class class class wbr 5123  Fun wfun 6535   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  f cof 7677   supp csupp 8167  Fincfn 8967   finSupp cfsupp 9383  Basecbs 17229  Scalarcsca 17276   ·𝑠 cvsca 17277  0gc0g 17455  LModclmod 20826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-supp 8168  df-1o 8488  df-en 8968  df-fin 8971  df-fsupp 9384  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-ring 20200  df-lmod 20828
This theorem is referenced by:  islindf4  21812  fedgmullem2  33616
  Copyright terms: Public domain W3C validator