MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup2 Structured version   Visualization version   GIF version

Theorem frlmup2 21016
Description: The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
frlmup.y (𝜑𝑌𝐼)
frlmup.u 𝑈 = (𝑅 unitVec 𝐼)
Assertion
Ref Expression
frlmup2 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌   𝑥,𝑈   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup2
StepHypRef Expression
1 frlmup.r . . . . . 6 (𝜑𝑅 = (Scalar‘𝑇))
2 frlmup.t . . . . . . 7 (𝜑𝑇 ∈ LMod)
3 eqid 2738 . . . . . . . 8 (Scalar‘𝑇) = (Scalar‘𝑇)
43lmodring 20141 . . . . . . 7 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
52, 4syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑇) ∈ Ring)
61, 5eqeltrd 2839 . . . . 5 (𝜑𝑅 ∈ Ring)
7 frlmup.i . . . . 5 (𝜑𝐼𝑋)
8 frlmup.u . . . . . 6 𝑈 = (𝑅 unitVec 𝐼)
9 frlmup.f . . . . . 6 𝐹 = (𝑅 freeLMod 𝐼)
10 frlmup.b . . . . . 6 𝐵 = (Base‘𝐹)
118, 9, 10uvcff 21008 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑈:𝐼𝐵)
126, 7, 11syl2anc 584 . . . 4 (𝜑𝑈:𝐼𝐵)
13 frlmup.y . . . 4 (𝜑𝑌𝐼)
1412, 13ffvelrnd 6954 . . 3 (𝜑 → (𝑈𝑌) ∈ 𝐵)
15 oveq1 7274 . . . . 5 (𝑥 = (𝑈𝑌) → (𝑥f · 𝐴) = ((𝑈𝑌) ∘f · 𝐴))
1615oveq2d 7283 . . . 4 (𝑥 = (𝑈𝑌) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
17 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
18 ovex 7300 . . . 4 (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)) ∈ V
1916, 17, 18fvmpt 6867 . . 3 ((𝑈𝑌) ∈ 𝐵 → (𝐸‘(𝑈𝑌)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
2014, 19syl 17 . 2 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
21 frlmup.c . . 3 𝐶 = (Base‘𝑇)
22 eqid 2738 . . 3 (0g𝑇) = (0g𝑇)
23 lmodcmn 20181 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
24 cmnmnd 19412 . . . 4 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
252, 23, 243syl 18 . . 3 (𝜑𝑇 ∈ Mnd)
26 eqid 2738 . . . 4 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
27 frlmup.v . . . 4 · = ( ·𝑠𝑇)
28 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
299, 28, 10frlmbasf 20977 . . . . . 6 ((𝐼𝑋 ∧ (𝑈𝑌) ∈ 𝐵) → (𝑈𝑌):𝐼⟶(Base‘𝑅))
307, 14, 29syl2anc 584 . . . . 5 (𝜑 → (𝑈𝑌):𝐼⟶(Base‘𝑅))
311fveq2d 6770 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
3231feq3d 6579 . . . . 5 (𝜑 → ((𝑈𝑌):𝐼⟶(Base‘𝑅) ↔ (𝑈𝑌):𝐼⟶(Base‘(Scalar‘𝑇))))
3330, 32mpbid 231 . . . 4 (𝜑 → (𝑈𝑌):𝐼⟶(Base‘(Scalar‘𝑇)))
34 frlmup.a . . . 4 (𝜑𝐴:𝐼𝐶)
353, 26, 27, 21, 2, 33, 34, 7lcomf 20172 . . 3 (𝜑 → ((𝑈𝑌) ∘f · 𝐴):𝐼𝐶)
3630ffnd 6593 . . . . . . 7 (𝜑 → (𝑈𝑌) Fn 𝐼)
3736adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝑈𝑌) Fn 𝐼)
3834ffnd 6593 . . . . . . 7 (𝜑𝐴 Fn 𝐼)
3938adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐴 Fn 𝐼)
407adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐼𝑋)
41 eldifi 4060 . . . . . . 7 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥𝐼)
4241adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑥𝐼)
43 fnfvof 7540 . . . . . 6 ((((𝑈𝑌) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈𝑌)‘𝑥) · (𝐴𝑥)))
4437, 39, 40, 42, 43syl22anc 836 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈𝑌)‘𝑥) · (𝐴𝑥)))
456adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑅 ∈ Ring)
4613adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌𝐼)
47 eldifsni 4723 . . . . . . . . . 10 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥𝑌)
4847necomd 2999 . . . . . . . . 9 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑌𝑥)
4948adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌𝑥)
50 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
518, 45, 40, 46, 42, 49, 50uvcvv0 21007 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈𝑌)‘𝑥) = (0g𝑅))
521fveq2d 6770 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
5352adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (0g𝑅) = (0g‘(Scalar‘𝑇)))
5451, 53eqtrd 2778 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈𝑌)‘𝑥) = (0g‘(Scalar‘𝑇)))
5554oveq1d 7282 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌)‘𝑥) · (𝐴𝑥)) = ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)))
562adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑇 ∈ LMod)
57 ffvelrn 6951 . . . . . . 7 ((𝐴:𝐼𝐶𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
5834, 41, 57syl2an 596 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝐴𝑥) ∈ 𝐶)
59 eqid 2738 . . . . . . 7 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6021, 3, 27, 59, 22lmod0vs 20166 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐴𝑥) ∈ 𝐶) → ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)) = (0g𝑇))
6156, 58, 60syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)) = (0g𝑇))
6244, 55, 613eqtrd 2782 . . . 4 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (0g𝑇))
6335, 62suppss 7997 . . 3 (𝜑 → (((𝑈𝑌) ∘f · 𝐴) supp (0g𝑇)) ⊆ {𝑌})
6421, 22, 25, 7, 13, 35, 63gsumpt 19573 . 2 (𝜑 → (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)) = (((𝑈𝑌) ∘f · 𝐴)‘𝑌))
65 fnfvof 7540 . . . 4 ((((𝑈𝑌) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑌𝐼)) → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈𝑌)‘𝑌) · (𝐴𝑌)))
6636, 38, 7, 13, 65syl22anc 836 . . 3 (𝜑 → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈𝑌)‘𝑌) · (𝐴𝑌)))
67 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
688, 6, 7, 13, 67uvcvv1 21006 . . . . 5 (𝜑 → ((𝑈𝑌)‘𝑌) = (1r𝑅))
691fveq2d 6770 . . . . 5 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑇)))
7068, 69eqtrd 2778 . . . 4 (𝜑 → ((𝑈𝑌)‘𝑌) = (1r‘(Scalar‘𝑇)))
7170oveq1d 7282 . . 3 (𝜑 → (((𝑈𝑌)‘𝑌) · (𝐴𝑌)) = ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)))
7234, 13ffvelrnd 6954 . . . 4 (𝜑 → (𝐴𝑌) ∈ 𝐶)
73 eqid 2738 . . . . 5 (1r‘(Scalar‘𝑇)) = (1r‘(Scalar‘𝑇))
7421, 3, 27, 73lmodvs1 20161 . . . 4 ((𝑇 ∈ LMod ∧ (𝐴𝑌) ∈ 𝐶) → ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)) = (𝐴𝑌))
752, 72, 74syl2anc 584 . . 3 (𝜑 → ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)) = (𝐴𝑌))
7666, 71, 753eqtrd 2782 . 2 (𝜑 → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (𝐴𝑌))
7720, 64, 763eqtrd 2782 1 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3883  {csn 4561  cmpt 5156   Fn wfn 6421  wf 6422  cfv 6426  (class class class)co 7267  f cof 7521  Basecbs 16922  Scalarcsca 16975   ·𝑠 cvsca 16976  0gc0g 17160   Σg cgsu 17161  Mndcmnd 18395  CMndccmn 19396  1rcur 19747  Ringcrg 19793  LModclmod 20133   freeLMod cfrlm 20963   unitVec cuvc 20999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-sup 9188  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-fz 13250  df-fzo 13393  df-seq 13732  df-hash 14055  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-hom 16996  df-cco 16997  df-0g 17162  df-gsum 17163  df-prds 17168  df-pws 17170  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-submnd 18441  df-grp 18590  df-minusg 18591  df-mulg 18711  df-cntz 18933  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-lmod 20135  df-sra 20444  df-rgmod 20445  df-dsmm 20949  df-frlm 20964  df-uvc 21000
This theorem is referenced by:  frlmup3  21017  frlmup4  21018
  Copyright terms: Public domain W3C validator