MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup2 Structured version   Visualization version   GIF version

Theorem frlmup2 21706
Description: The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
frlmup.y (𝜑𝑌𝐼)
frlmup.u 𝑈 = (𝑅 unitVec 𝐼)
Assertion
Ref Expression
frlmup2 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌   𝑥,𝑈   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup2
StepHypRef Expression
1 frlmup.r . . . . . 6 (𝜑𝑅 = (Scalar‘𝑇))
2 frlmup.t . . . . . . 7 (𝜑𝑇 ∈ LMod)
3 eqid 2729 . . . . . . . 8 (Scalar‘𝑇) = (Scalar‘𝑇)
43lmodring 20771 . . . . . . 7 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
52, 4syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑇) ∈ Ring)
61, 5eqeltrd 2828 . . . . 5 (𝜑𝑅 ∈ Ring)
7 frlmup.i . . . . 5 (𝜑𝐼𝑋)
8 frlmup.u . . . . . 6 𝑈 = (𝑅 unitVec 𝐼)
9 frlmup.f . . . . . 6 𝐹 = (𝑅 freeLMod 𝐼)
10 frlmup.b . . . . . 6 𝐵 = (Base‘𝐹)
118, 9, 10uvcff 21698 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑈:𝐼𝐵)
126, 7, 11syl2anc 584 . . . 4 (𝜑𝑈:𝐼𝐵)
13 frlmup.y . . . 4 (𝜑𝑌𝐼)
1412, 13ffvelcdmd 7019 . . 3 (𝜑 → (𝑈𝑌) ∈ 𝐵)
15 oveq1 7356 . . . . 5 (𝑥 = (𝑈𝑌) → (𝑥f · 𝐴) = ((𝑈𝑌) ∘f · 𝐴))
1615oveq2d 7365 . . . 4 (𝑥 = (𝑈𝑌) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
17 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
18 ovex 7382 . . . 4 (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)) ∈ V
1916, 17, 18fvmpt 6930 . . 3 ((𝑈𝑌) ∈ 𝐵 → (𝐸‘(𝑈𝑌)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
2014, 19syl 17 . 2 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
21 frlmup.c . . 3 𝐶 = (Base‘𝑇)
22 eqid 2729 . . 3 (0g𝑇) = (0g𝑇)
23 lmodcmn 20813 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
24 cmnmnd 19676 . . . 4 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
252, 23, 243syl 18 . . 3 (𝜑𝑇 ∈ Mnd)
26 eqid 2729 . . . 4 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
27 frlmup.v . . . 4 · = ( ·𝑠𝑇)
28 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
299, 28, 10frlmbasf 21667 . . . . . 6 ((𝐼𝑋 ∧ (𝑈𝑌) ∈ 𝐵) → (𝑈𝑌):𝐼⟶(Base‘𝑅))
307, 14, 29syl2anc 584 . . . . 5 (𝜑 → (𝑈𝑌):𝐼⟶(Base‘𝑅))
311fveq2d 6826 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
3231feq3d 6637 . . . . 5 (𝜑 → ((𝑈𝑌):𝐼⟶(Base‘𝑅) ↔ (𝑈𝑌):𝐼⟶(Base‘(Scalar‘𝑇))))
3330, 32mpbid 232 . . . 4 (𝜑 → (𝑈𝑌):𝐼⟶(Base‘(Scalar‘𝑇)))
34 frlmup.a . . . 4 (𝜑𝐴:𝐼𝐶)
353, 26, 27, 21, 2, 33, 34, 7lcomf 20804 . . 3 (𝜑 → ((𝑈𝑌) ∘f · 𝐴):𝐼𝐶)
3630ffnd 6653 . . . . . . 7 (𝜑 → (𝑈𝑌) Fn 𝐼)
3736adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝑈𝑌) Fn 𝐼)
3834ffnd 6653 . . . . . . 7 (𝜑𝐴 Fn 𝐼)
3938adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐴 Fn 𝐼)
407adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐼𝑋)
41 eldifi 4082 . . . . . . 7 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥𝐼)
4241adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑥𝐼)
43 fnfvof 7630 . . . . . 6 ((((𝑈𝑌) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈𝑌)‘𝑥) · (𝐴𝑥)))
4437, 39, 40, 42, 43syl22anc 838 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈𝑌)‘𝑥) · (𝐴𝑥)))
456adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑅 ∈ Ring)
4613adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌𝐼)
47 eldifsni 4741 . . . . . . . . . 10 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥𝑌)
4847necomd 2980 . . . . . . . . 9 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑌𝑥)
4948adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌𝑥)
50 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
518, 45, 40, 46, 42, 49, 50uvcvv0 21697 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈𝑌)‘𝑥) = (0g𝑅))
521fveq2d 6826 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
5352adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (0g𝑅) = (0g‘(Scalar‘𝑇)))
5451, 53eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈𝑌)‘𝑥) = (0g‘(Scalar‘𝑇)))
5554oveq1d 7364 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌)‘𝑥) · (𝐴𝑥)) = ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)))
562adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑇 ∈ LMod)
57 ffvelcdm 7015 . . . . . . 7 ((𝐴:𝐼𝐶𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
5834, 41, 57syl2an 596 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝐴𝑥) ∈ 𝐶)
59 eqid 2729 . . . . . . 7 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6021, 3, 27, 59, 22lmod0vs 20798 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐴𝑥) ∈ 𝐶) → ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)) = (0g𝑇))
6156, 58, 60syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)) = (0g𝑇))
6244, 55, 613eqtrd 2768 . . . 4 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (0g𝑇))
6335, 62suppss 8127 . . 3 (𝜑 → (((𝑈𝑌) ∘f · 𝐴) supp (0g𝑇)) ⊆ {𝑌})
6421, 22, 25, 7, 13, 35, 63gsumpt 19841 . 2 (𝜑 → (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)) = (((𝑈𝑌) ∘f · 𝐴)‘𝑌))
65 fnfvof 7630 . . . 4 ((((𝑈𝑌) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑌𝐼)) → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈𝑌)‘𝑌) · (𝐴𝑌)))
6636, 38, 7, 13, 65syl22anc 838 . . 3 (𝜑 → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈𝑌)‘𝑌) · (𝐴𝑌)))
67 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
688, 6, 7, 13, 67uvcvv1 21696 . . . . 5 (𝜑 → ((𝑈𝑌)‘𝑌) = (1r𝑅))
691fveq2d 6826 . . . . 5 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑇)))
7068, 69eqtrd 2764 . . . 4 (𝜑 → ((𝑈𝑌)‘𝑌) = (1r‘(Scalar‘𝑇)))
7170oveq1d 7364 . . 3 (𝜑 → (((𝑈𝑌)‘𝑌) · (𝐴𝑌)) = ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)))
7234, 13ffvelcdmd 7019 . . . 4 (𝜑 → (𝐴𝑌) ∈ 𝐶)
73 eqid 2729 . . . . 5 (1r‘(Scalar‘𝑇)) = (1r‘(Scalar‘𝑇))
7421, 3, 27, 73lmodvs1 20793 . . . 4 ((𝑇 ∈ LMod ∧ (𝐴𝑌) ∈ 𝐶) → ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)) = (𝐴𝑌))
752, 72, 74syl2anc 584 . . 3 (𝜑 → ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)) = (𝐴𝑌))
7666, 71, 753eqtrd 2768 . 2 (𝜑 → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (𝐴𝑌))
7720, 64, 763eqtrd 2768 1 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3900  {csn 4577  cmpt 5173   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  CMndccmn 19659  1rcur 20066  Ringcrg 20118  LModclmod 20763   freeLMod cfrlm 21653   unitVec cuvc 21689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-sra 21077  df-rgmod 21078  df-dsmm 21639  df-frlm 21654  df-uvc 21690
This theorem is referenced by:  frlmup3  21707  frlmup4  21708
  Copyright terms: Public domain W3C validator