MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup2 Structured version   Visualization version   GIF version

Theorem frlmup2 21006
Description: The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
frlmup.y (𝜑𝑌𝐼)
frlmup.u 𝑈 = (𝑅 unitVec 𝐼)
Assertion
Ref Expression
frlmup2 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌   𝑥,𝑈   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup2
StepHypRef Expression
1 frlmup.r . . . . . 6 (𝜑𝑅 = (Scalar‘𝑇))
2 frlmup.t . . . . . . 7 (𝜑𝑇 ∈ LMod)
3 eqid 2738 . . . . . . . 8 (Scalar‘𝑇) = (Scalar‘𝑇)
43lmodring 20131 . . . . . . 7 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
52, 4syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑇) ∈ Ring)
61, 5eqeltrd 2839 . . . . 5 (𝜑𝑅 ∈ Ring)
7 frlmup.i . . . . 5 (𝜑𝐼𝑋)
8 frlmup.u . . . . . 6 𝑈 = (𝑅 unitVec 𝐼)
9 frlmup.f . . . . . 6 𝐹 = (𝑅 freeLMod 𝐼)
10 frlmup.b . . . . . 6 𝐵 = (Base‘𝐹)
118, 9, 10uvcff 20998 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑈:𝐼𝐵)
126, 7, 11syl2anc 584 . . . 4 (𝜑𝑈:𝐼𝐵)
13 frlmup.y . . . 4 (𝜑𝑌𝐼)
1412, 13ffvelrnd 6962 . . 3 (𝜑 → (𝑈𝑌) ∈ 𝐵)
15 oveq1 7282 . . . . 5 (𝑥 = (𝑈𝑌) → (𝑥f · 𝐴) = ((𝑈𝑌) ∘f · 𝐴))
1615oveq2d 7291 . . . 4 (𝑥 = (𝑈𝑌) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
17 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
18 ovex 7308 . . . 4 (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)) ∈ V
1916, 17, 18fvmpt 6875 . . 3 ((𝑈𝑌) ∈ 𝐵 → (𝐸‘(𝑈𝑌)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
2014, 19syl 17 . 2 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
21 frlmup.c . . 3 𝐶 = (Base‘𝑇)
22 eqid 2738 . . 3 (0g𝑇) = (0g𝑇)
23 lmodcmn 20171 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
24 cmnmnd 19402 . . . 4 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
252, 23, 243syl 18 . . 3 (𝜑𝑇 ∈ Mnd)
26 eqid 2738 . . . 4 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
27 frlmup.v . . . 4 · = ( ·𝑠𝑇)
28 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
299, 28, 10frlmbasf 20967 . . . . . 6 ((𝐼𝑋 ∧ (𝑈𝑌) ∈ 𝐵) → (𝑈𝑌):𝐼⟶(Base‘𝑅))
307, 14, 29syl2anc 584 . . . . 5 (𝜑 → (𝑈𝑌):𝐼⟶(Base‘𝑅))
311fveq2d 6778 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
3231feq3d 6587 . . . . 5 (𝜑 → ((𝑈𝑌):𝐼⟶(Base‘𝑅) ↔ (𝑈𝑌):𝐼⟶(Base‘(Scalar‘𝑇))))
3330, 32mpbid 231 . . . 4 (𝜑 → (𝑈𝑌):𝐼⟶(Base‘(Scalar‘𝑇)))
34 frlmup.a . . . 4 (𝜑𝐴:𝐼𝐶)
353, 26, 27, 21, 2, 33, 34, 7lcomf 20162 . . 3 (𝜑 → ((𝑈𝑌) ∘f · 𝐴):𝐼𝐶)
3630ffnd 6601 . . . . . . 7 (𝜑 → (𝑈𝑌) Fn 𝐼)
3736adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝑈𝑌) Fn 𝐼)
3834ffnd 6601 . . . . . . 7 (𝜑𝐴 Fn 𝐼)
3938adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐴 Fn 𝐼)
407adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐼𝑋)
41 eldifi 4061 . . . . . . 7 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥𝐼)
4241adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑥𝐼)
43 fnfvof 7550 . . . . . 6 ((((𝑈𝑌) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈𝑌)‘𝑥) · (𝐴𝑥)))
4437, 39, 40, 42, 43syl22anc 836 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈𝑌)‘𝑥) · (𝐴𝑥)))
456adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑅 ∈ Ring)
4613adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌𝐼)
47 eldifsni 4723 . . . . . . . . . 10 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥𝑌)
4847necomd 2999 . . . . . . . . 9 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑌𝑥)
4948adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌𝑥)
50 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
518, 45, 40, 46, 42, 49, 50uvcvv0 20997 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈𝑌)‘𝑥) = (0g𝑅))
521fveq2d 6778 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
5352adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (0g𝑅) = (0g‘(Scalar‘𝑇)))
5451, 53eqtrd 2778 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈𝑌)‘𝑥) = (0g‘(Scalar‘𝑇)))
5554oveq1d 7290 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌)‘𝑥) · (𝐴𝑥)) = ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)))
562adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑇 ∈ LMod)
57 ffvelrn 6959 . . . . . . 7 ((𝐴:𝐼𝐶𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
5834, 41, 57syl2an 596 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝐴𝑥) ∈ 𝐶)
59 eqid 2738 . . . . . . 7 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6021, 3, 27, 59, 22lmod0vs 20156 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐴𝑥) ∈ 𝐶) → ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)) = (0g𝑇))
6156, 58, 60syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)) = (0g𝑇))
6244, 55, 613eqtrd 2782 . . . 4 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (0g𝑇))
6335, 62suppss 8010 . . 3 (𝜑 → (((𝑈𝑌) ∘f · 𝐴) supp (0g𝑇)) ⊆ {𝑌})
6421, 22, 25, 7, 13, 35, 63gsumpt 19563 . 2 (𝜑 → (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)) = (((𝑈𝑌) ∘f · 𝐴)‘𝑌))
65 fnfvof 7550 . . . 4 ((((𝑈𝑌) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑌𝐼)) → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈𝑌)‘𝑌) · (𝐴𝑌)))
6636, 38, 7, 13, 65syl22anc 836 . . 3 (𝜑 → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈𝑌)‘𝑌) · (𝐴𝑌)))
67 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
688, 6, 7, 13, 67uvcvv1 20996 . . . . 5 (𝜑 → ((𝑈𝑌)‘𝑌) = (1r𝑅))
691fveq2d 6778 . . . . 5 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑇)))
7068, 69eqtrd 2778 . . . 4 (𝜑 → ((𝑈𝑌)‘𝑌) = (1r‘(Scalar‘𝑇)))
7170oveq1d 7290 . . 3 (𝜑 → (((𝑈𝑌)‘𝑌) · (𝐴𝑌)) = ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)))
7234, 13ffvelrnd 6962 . . . 4 (𝜑 → (𝐴𝑌) ∈ 𝐶)
73 eqid 2738 . . . . 5 (1r‘(Scalar‘𝑇)) = (1r‘(Scalar‘𝑇))
7421, 3, 27, 73lmodvs1 20151 . . . 4 ((𝑇 ∈ LMod ∧ (𝐴𝑌) ∈ 𝐶) → ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)) = (𝐴𝑌))
752, 72, 74syl2anc 584 . . 3 (𝜑 → ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)) = (𝐴𝑌))
7666, 71, 753eqtrd 2782 . 2 (𝜑 → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (𝐴𝑌))
7720, 64, 763eqtrd 2782 1 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  {csn 4561  cmpt 5157   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  CMndccmn 19386  1rcur 19737  Ringcrg 19783  LModclmod 20123   freeLMod cfrlm 20953   unitVec cuvc 20989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-uvc 20990
This theorem is referenced by:  frlmup3  21007  frlmup4  21008
  Copyright terms: Public domain W3C validator