Proof of Theorem frlmup2
Step | Hyp | Ref
| Expression |
1 | | frlmup.r |
. . . . . 6
⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
2 | | frlmup.t |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ LMod) |
3 | | eqid 2738 |
. . . . . . . 8
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
4 | 3 | lmodring 20131 |
. . . . . . 7
⊢ (𝑇 ∈ LMod →
(Scalar‘𝑇) ∈
Ring) |
5 | 2, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
6 | 1, 5 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | | frlmup.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑋) |
8 | | frlmup.u |
. . . . . 6
⊢ 𝑈 = (𝑅 unitVec 𝐼) |
9 | | frlmup.f |
. . . . . 6
⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
10 | | frlmup.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐹) |
11 | 8, 9, 10 | uvcff 20998 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → 𝑈:𝐼⟶𝐵) |
12 | 6, 7, 11 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑈:𝐼⟶𝐵) |
13 | | frlmup.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐼) |
14 | 12, 13 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝑈‘𝑌) ∈ 𝐵) |
15 | | oveq1 7282 |
. . . . 5
⊢ (𝑥 = (𝑈‘𝑌) → (𝑥 ∘f · 𝐴) = ((𝑈‘𝑌) ∘f · 𝐴)) |
16 | 15 | oveq2d 7291 |
. . . 4
⊢ (𝑥 = (𝑈‘𝑌) → (𝑇 Σg (𝑥 ∘f · 𝐴)) = (𝑇 Σg ((𝑈‘𝑌) ∘f · 𝐴))) |
17 | | frlmup.e |
. . . 4
⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
18 | | ovex 7308 |
. . . 4
⊢ (𝑇 Σg
((𝑈‘𝑌) ∘f · 𝐴)) ∈ V |
19 | 16, 17, 18 | fvmpt 6875 |
. . 3
⊢ ((𝑈‘𝑌) ∈ 𝐵 → (𝐸‘(𝑈‘𝑌)) = (𝑇 Σg ((𝑈‘𝑌) ∘f · 𝐴))) |
20 | 14, 19 | syl 17 |
. 2
⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝑇 Σg ((𝑈‘𝑌) ∘f · 𝐴))) |
21 | | frlmup.c |
. . 3
⊢ 𝐶 = (Base‘𝑇) |
22 | | eqid 2738 |
. . 3
⊢
(0g‘𝑇) = (0g‘𝑇) |
23 | | lmodcmn 20171 |
. . . 4
⊢ (𝑇 ∈ LMod → 𝑇 ∈ CMnd) |
24 | | cmnmnd 19402 |
. . . 4
⊢ (𝑇 ∈ CMnd → 𝑇 ∈ Mnd) |
25 | 2, 23, 24 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝑇 ∈ Mnd) |
26 | | eqid 2738 |
. . . 4
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
27 | | frlmup.v |
. . . 4
⊢ · = (
·𝑠 ‘𝑇) |
28 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
29 | 9, 28, 10 | frlmbasf 20967 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑋 ∧ (𝑈‘𝑌) ∈ 𝐵) → (𝑈‘𝑌):𝐼⟶(Base‘𝑅)) |
30 | 7, 14, 29 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑈‘𝑌):𝐼⟶(Base‘𝑅)) |
31 | 1 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑇))) |
32 | 31 | feq3d 6587 |
. . . . 5
⊢ (𝜑 → ((𝑈‘𝑌):𝐼⟶(Base‘𝑅) ↔ (𝑈‘𝑌):𝐼⟶(Base‘(Scalar‘𝑇)))) |
33 | 30, 32 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝑈‘𝑌):𝐼⟶(Base‘(Scalar‘𝑇))) |
34 | | frlmup.a |
. . . 4
⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
35 | 3, 26, 27, 21, 2, 33, 34, 7 | lcomf 20162 |
. . 3
⊢ (𝜑 → ((𝑈‘𝑌) ∘f · 𝐴):𝐼⟶𝐶) |
36 | 30 | ffnd 6601 |
. . . . . . 7
⊢ (𝜑 → (𝑈‘𝑌) Fn 𝐼) |
37 | 36 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝑈‘𝑌) Fn 𝐼) |
38 | 34 | ffnd 6601 |
. . . . . . 7
⊢ (𝜑 → 𝐴 Fn 𝐼) |
39 | 38 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐴 Fn 𝐼) |
40 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐼 ∈ 𝑋) |
41 | | eldifi 4061 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥 ∈ 𝐼) |
42 | 41 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑥 ∈ 𝐼) |
43 | | fnfvof 7550 |
. . . . . 6
⊢ ((((𝑈‘𝑌) Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → (((𝑈‘𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈‘𝑌)‘𝑥) · (𝐴‘𝑥))) |
44 | 37, 39, 40, 42, 43 | syl22anc 836 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈‘𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈‘𝑌)‘𝑥) · (𝐴‘𝑥))) |
45 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑅 ∈ Ring) |
46 | 13 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌 ∈ 𝐼) |
47 | | eldifsni 4723 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥 ≠ 𝑌) |
48 | 47 | necomd 2999 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑌 ≠ 𝑥) |
49 | 48 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌 ≠ 𝑥) |
50 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
51 | 8, 45, 40, 46, 42, 49, 50 | uvcvv0 20997 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈‘𝑌)‘𝑥) = (0g‘𝑅)) |
52 | 1 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑅) =
(0g‘(Scalar‘𝑇))) |
53 | 52 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → (0g‘𝑅) =
(0g‘(Scalar‘𝑇))) |
54 | 51, 53 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈‘𝑌)‘𝑥) = (0g‘(Scalar‘𝑇))) |
55 | 54 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈‘𝑌)‘𝑥) · (𝐴‘𝑥)) =
((0g‘(Scalar‘𝑇)) · (𝐴‘𝑥))) |
56 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑇 ∈ LMod) |
57 | | ffvelrn 6959 |
. . . . . . 7
⊢ ((𝐴:𝐼⟶𝐶 ∧ 𝑥 ∈ 𝐼) → (𝐴‘𝑥) ∈ 𝐶) |
58 | 34, 41, 57 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝐴‘𝑥) ∈ 𝐶) |
59 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑇)) =
(0g‘(Scalar‘𝑇)) |
60 | 21, 3, 27, 59, 22 | lmod0vs 20156 |
. . . . . 6
⊢ ((𝑇 ∈ LMod ∧ (𝐴‘𝑥) ∈ 𝐶) →
((0g‘(Scalar‘𝑇)) · (𝐴‘𝑥)) = (0g‘𝑇)) |
61 | 56, 58, 60 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) →
((0g‘(Scalar‘𝑇)) · (𝐴‘𝑥)) = (0g‘𝑇)) |
62 | 44, 55, 61 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈‘𝑌) ∘f · 𝐴)‘𝑥) = (0g‘𝑇)) |
63 | 35, 62 | suppss 8010 |
. . 3
⊢ (𝜑 → (((𝑈‘𝑌) ∘f · 𝐴) supp (0g‘𝑇)) ⊆ {𝑌}) |
64 | 21, 22, 25, 7, 13, 35, 63 | gsumpt 19563 |
. 2
⊢ (𝜑 → (𝑇 Σg ((𝑈‘𝑌) ∘f · 𝐴)) = (((𝑈‘𝑌) ∘f · 𝐴)‘𝑌)) |
65 | | fnfvof 7550 |
. . . 4
⊢ ((((𝑈‘𝑌) Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑌 ∈ 𝐼)) → (((𝑈‘𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈‘𝑌)‘𝑌) · (𝐴‘𝑌))) |
66 | 36, 38, 7, 13, 65 | syl22anc 836 |
. . 3
⊢ (𝜑 → (((𝑈‘𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈‘𝑌)‘𝑌) · (𝐴‘𝑌))) |
67 | | eqid 2738 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
68 | 8, 6, 7, 13, 67 | uvcvv1 20996 |
. . . . 5
⊢ (𝜑 → ((𝑈‘𝑌)‘𝑌) = (1r‘𝑅)) |
69 | 1 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → (1r‘𝑅) =
(1r‘(Scalar‘𝑇))) |
70 | 68, 69 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → ((𝑈‘𝑌)‘𝑌) = (1r‘(Scalar‘𝑇))) |
71 | 70 | oveq1d 7290 |
. . 3
⊢ (𝜑 → (((𝑈‘𝑌)‘𝑌) · (𝐴‘𝑌)) =
((1r‘(Scalar‘𝑇)) · (𝐴‘𝑌))) |
72 | 34, 13 | ffvelrnd 6962 |
. . . 4
⊢ (𝜑 → (𝐴‘𝑌) ∈ 𝐶) |
73 | | eqid 2738 |
. . . . 5
⊢
(1r‘(Scalar‘𝑇)) =
(1r‘(Scalar‘𝑇)) |
74 | 21, 3, 27, 73 | lmodvs1 20151 |
. . . 4
⊢ ((𝑇 ∈ LMod ∧ (𝐴‘𝑌) ∈ 𝐶) →
((1r‘(Scalar‘𝑇)) · (𝐴‘𝑌)) = (𝐴‘𝑌)) |
75 | 2, 72, 74 | syl2anc 584 |
. . 3
⊢ (𝜑 →
((1r‘(Scalar‘𝑇)) · (𝐴‘𝑌)) = (𝐴‘𝑌)) |
76 | 66, 71, 75 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → (((𝑈‘𝑌) ∘f · 𝐴)‘𝑌) = (𝐴‘𝑌)) |
77 | 20, 64, 76 | 3eqtrd 2782 |
1
⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) |