MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup2 Structured version   Visualization version   GIF version

Theorem frlmup2 20916
Description: The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
frlmup.y (𝜑𝑌𝐼)
frlmup.u 𝑈 = (𝑅 unitVec 𝐼)
Assertion
Ref Expression
frlmup2 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌   𝑥,𝑈   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup2
StepHypRef Expression
1 frlmup.r . . . . . 6 (𝜑𝑅 = (Scalar‘𝑇))
2 frlmup.t . . . . . . 7 (𝜑𝑇 ∈ LMod)
3 eqid 2820 . . . . . . . 8 (Scalar‘𝑇) = (Scalar‘𝑇)
43lmodring 19615 . . . . . . 7 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
52, 4syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑇) ∈ Ring)
61, 5eqeltrd 2911 . . . . 5 (𝜑𝑅 ∈ Ring)
7 frlmup.i . . . . 5 (𝜑𝐼𝑋)
8 frlmup.u . . . . . 6 𝑈 = (𝑅 unitVec 𝐼)
9 frlmup.f . . . . . 6 𝐹 = (𝑅 freeLMod 𝐼)
10 frlmup.b . . . . . 6 𝐵 = (Base‘𝐹)
118, 9, 10uvcff 20908 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑈:𝐼𝐵)
126, 7, 11syl2anc 586 . . . 4 (𝜑𝑈:𝐼𝐵)
13 frlmup.y . . . 4 (𝜑𝑌𝐼)
1412, 13ffvelrnd 6826 . . 3 (𝜑 → (𝑈𝑌) ∈ 𝐵)
15 oveq1 7138 . . . . 5 (𝑥 = (𝑈𝑌) → (𝑥f · 𝐴) = ((𝑈𝑌) ∘f · 𝐴))
1615oveq2d 7147 . . . 4 (𝑥 = (𝑈𝑌) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
17 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
18 ovex 7164 . . . 4 (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)) ∈ V
1916, 17, 18fvmpt 6742 . . 3 ((𝑈𝑌) ∈ 𝐵 → (𝐸‘(𝑈𝑌)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
2014, 19syl 17 . 2 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)))
21 frlmup.c . . 3 𝐶 = (Base‘𝑇)
22 eqid 2820 . . 3 (0g𝑇) = (0g𝑇)
23 lmodcmn 19655 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
24 cmnmnd 18898 . . . 4 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
252, 23, 243syl 18 . . 3 (𝜑𝑇 ∈ Mnd)
26 eqid 2820 . . . 4 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
27 frlmup.v . . . 4 · = ( ·𝑠𝑇)
28 eqid 2820 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
299, 28, 10frlmbasf 20877 . . . . . 6 ((𝐼𝑋 ∧ (𝑈𝑌) ∈ 𝐵) → (𝑈𝑌):𝐼⟶(Base‘𝑅))
307, 14, 29syl2anc 586 . . . . 5 (𝜑 → (𝑈𝑌):𝐼⟶(Base‘𝑅))
311fveq2d 6648 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
3231feq3d 6475 . . . . 5 (𝜑 → ((𝑈𝑌):𝐼⟶(Base‘𝑅) ↔ (𝑈𝑌):𝐼⟶(Base‘(Scalar‘𝑇))))
3330, 32mpbid 234 . . . 4 (𝜑 → (𝑈𝑌):𝐼⟶(Base‘(Scalar‘𝑇)))
34 frlmup.a . . . 4 (𝜑𝐴:𝐼𝐶)
353, 26, 27, 21, 2, 33, 34, 7lcomf 19646 . . 3 (𝜑 → ((𝑈𝑌) ∘f · 𝐴):𝐼𝐶)
3630ffnd 6489 . . . . . . 7 (𝜑 → (𝑈𝑌) Fn 𝐼)
3736adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝑈𝑌) Fn 𝐼)
3834ffnd 6489 . . . . . . 7 (𝜑𝐴 Fn 𝐼)
3938adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐴 Fn 𝐼)
407adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝐼𝑋)
41 eldifi 4079 . . . . . . 7 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥𝐼)
4241adantl 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑥𝐼)
43 fnfvof 7399 . . . . . 6 ((((𝑈𝑌) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈𝑌)‘𝑥) · (𝐴𝑥)))
4437, 39, 40, 42, 43syl22anc 836 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (((𝑈𝑌)‘𝑥) · (𝐴𝑥)))
456adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑅 ∈ Ring)
4613adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌𝐼)
47 eldifsni 4696 . . . . . . . . . 10 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑥𝑌)
4847necomd 3061 . . . . . . . . 9 (𝑥 ∈ (𝐼 ∖ {𝑌}) → 𝑌𝑥)
4948adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑌𝑥)
50 eqid 2820 . . . . . . . 8 (0g𝑅) = (0g𝑅)
518, 45, 40, 46, 42, 49, 50uvcvv0 20907 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈𝑌)‘𝑥) = (0g𝑅))
521fveq2d 6648 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
5352adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (0g𝑅) = (0g‘(Scalar‘𝑇)))
5451, 53eqtrd 2855 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((𝑈𝑌)‘𝑥) = (0g‘(Scalar‘𝑇)))
5554oveq1d 7146 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌)‘𝑥) · (𝐴𝑥)) = ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)))
562adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → 𝑇 ∈ LMod)
57 ffvelrn 6823 . . . . . . 7 ((𝐴:𝐼𝐶𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
5834, 41, 57syl2an 597 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (𝐴𝑥) ∈ 𝐶)
59 eqid 2820 . . . . . . 7 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6021, 3, 27, 59, 22lmod0vs 19640 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐴𝑥) ∈ 𝐶) → ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)) = (0g𝑇))
6156, 58, 60syl2anc 586 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → ((0g‘(Scalar‘𝑇)) · (𝐴𝑥)) = (0g𝑇))
6244, 55, 613eqtrd 2859 . . . 4 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑌})) → (((𝑈𝑌) ∘f · 𝐴)‘𝑥) = (0g𝑇))
6335, 62suppss 7836 . . 3 (𝜑 → (((𝑈𝑌) ∘f · 𝐴) supp (0g𝑇)) ⊆ {𝑌})
6421, 22, 25, 7, 13, 35, 63gsumpt 19058 . 2 (𝜑 → (𝑇 Σg ((𝑈𝑌) ∘f · 𝐴)) = (((𝑈𝑌) ∘f · 𝐴)‘𝑌))
65 fnfvof 7399 . . . 4 ((((𝑈𝑌) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑌𝐼)) → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈𝑌)‘𝑌) · (𝐴𝑌)))
6636, 38, 7, 13, 65syl22anc 836 . . 3 (𝜑 → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (((𝑈𝑌)‘𝑌) · (𝐴𝑌)))
67 eqid 2820 . . . . . 6 (1r𝑅) = (1r𝑅)
688, 6, 7, 13, 67uvcvv1 20906 . . . . 5 (𝜑 → ((𝑈𝑌)‘𝑌) = (1r𝑅))
691fveq2d 6648 . . . . 5 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑇)))
7068, 69eqtrd 2855 . . . 4 (𝜑 → ((𝑈𝑌)‘𝑌) = (1r‘(Scalar‘𝑇)))
7170oveq1d 7146 . . 3 (𝜑 → (((𝑈𝑌)‘𝑌) · (𝐴𝑌)) = ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)))
7234, 13ffvelrnd 6826 . . . 4 (𝜑 → (𝐴𝑌) ∈ 𝐶)
73 eqid 2820 . . . . 5 (1r‘(Scalar‘𝑇)) = (1r‘(Scalar‘𝑇))
7421, 3, 27, 73lmodvs1 19635 . . . 4 ((𝑇 ∈ LMod ∧ (𝐴𝑌) ∈ 𝐶) → ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)) = (𝐴𝑌))
752, 72, 74syl2anc 586 . . 3 (𝜑 → ((1r‘(Scalar‘𝑇)) · (𝐴𝑌)) = (𝐴𝑌))
7666, 71, 753eqtrd 2859 . 2 (𝜑 → (((𝑈𝑌) ∘f · 𝐴)‘𝑌) = (𝐴𝑌))
7720, 64, 763eqtrd 2859 1 (𝜑 → (𝐸‘(𝑈𝑌)) = (𝐴𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3006  cdif 3909  {csn 4541  cmpt 5120   Fn wfn 6324  wf 6325  cfv 6329  (class class class)co 7131  f cof 7383  Basecbs 16459  Scalarcsca 16544   ·𝑠 cvsca 16545  0gc0g 16689   Σg cgsu 16690  Mndcmnd 17887  CMndccmn 18882  1rcur 19227  Ringcrg 19273  LModclmod 19607   freeLMod cfrlm 20863   unitVec cuvc 20899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-int 4851  df-iun 4895  df-iin 4896  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-of 7385  df-om 7557  df-1st 7665  df-2nd 7666  df-supp 7807  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-1o 8078  df-oadd 8082  df-er 8265  df-map 8384  df-ixp 8438  df-en 8486  df-dom 8487  df-sdom 8488  df-fin 8489  df-fsupp 8810  df-sup 8882  df-oi 8950  df-card 9344  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-nn 11615  df-2 11677  df-3 11678  df-4 11679  df-5 11680  df-6 11681  df-7 11682  df-8 11683  df-9 11684  df-n0 11875  df-z 11959  df-dec 12076  df-uz 12221  df-fz 12875  df-fzo 13016  df-seq 13352  df-hash 13674  df-struct 16461  df-ndx 16462  df-slot 16463  df-base 16465  df-sets 16466  df-ress 16467  df-plusg 16554  df-mulr 16555  df-sca 16557  df-vsca 16558  df-ip 16559  df-tset 16560  df-ple 16561  df-ds 16563  df-hom 16565  df-cco 16566  df-0g 16691  df-gsum 16692  df-prds 16697  df-pws 16699  df-mre 16833  df-mrc 16834  df-acs 16836  df-mgm 17828  df-sgrp 17877  df-mnd 17888  df-submnd 17933  df-grp 18082  df-minusg 18083  df-mulg 18201  df-cntz 18423  df-cmn 18884  df-abl 18885  df-mgp 19216  df-ur 19228  df-ring 19275  df-lmod 19609  df-sra 19917  df-rgmod 19918  df-dsmm 20849  df-frlm 20864  df-uvc 20900
This theorem is referenced by:  frlmup3  20917  frlmup4  20918
  Copyright terms: Public domain W3C validator