MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfac Structured version   Visualization version   GIF version

Theorem hashfac 14493
Description: A factorial counts the number of bijections on a finite set. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof shortened by Mario Carneiro, 17-Apr-2015.)
Assertion
Ref Expression
hashfac (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}) = (!‘(♯‘𝐴)))
Distinct variable group:   𝐴,𝑓

Proof of Theorem hashfac
StepHypRef Expression
1 hashf1 14492 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))))
21anidms 566 . 2 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))))
3 enrefg 9022 . . . . 5 (𝐴 ∈ Fin → 𝐴𝐴)
4 f1finf1o 9302 . . . . 5 ((𝐴𝐴𝐴 ∈ Fin) → (𝑓:𝐴1-1𝐴𝑓:𝐴1-1-onto𝐴))
53, 4mpancom 688 . . . 4 (𝐴 ∈ Fin → (𝑓:𝐴1-1𝐴𝑓:𝐴1-1-onto𝐴))
65abbidv 2805 . . 3 (𝐴 ∈ Fin → {𝑓𝑓:𝐴1-1𝐴} = {𝑓𝑓:𝐴1-1-onto𝐴})
76fveq2d 6910 . 2 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}))
8 hashcl 14391 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
9 bcnn 14347 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴)C(♯‘𝐴)) = 1)
108, 9syl 17 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)C(♯‘𝐴)) = 1)
1110oveq2d 7446 . . 3 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))) = ((!‘(♯‘𝐴)) · 1))
128faccld 14319 . . . . 5 (𝐴 ∈ Fin → (!‘(♯‘𝐴)) ∈ ℕ)
1312nncnd 12279 . . . 4 (𝐴 ∈ Fin → (!‘(♯‘𝐴)) ∈ ℂ)
1413mulridd 11275 . . 3 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · 1) = (!‘(♯‘𝐴)))
1511, 14eqtrd 2774 . 2 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))) = (!‘(♯‘𝐴)))
162, 7, 153eqtr3d 2782 1 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}) = (!‘(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  {cab 2711   class class class wbr 5147  1-1wf1 6559  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cen 8980  Fincfn 8983  1c1 11153   · cmul 11157  0cn0 12523  !cfa 14308  Ccbc 14337  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-seq 14039  df-fac 14309  df-bc 14338  df-hash 14366
This theorem is referenced by:  symghash  19409  subfaclefac  35160  poimirlem9  37615
  Copyright terms: Public domain W3C validator