MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfac Structured version   Visualization version   GIF version

Theorem hashfac 14024
Description: A factorial counts the number of bijections on a finite set. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof shortened by Mario Carneiro, 17-Apr-2015.)
Assertion
Ref Expression
hashfac (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}) = (!‘(♯‘𝐴)))
Distinct variable group:   𝐴,𝑓

Proof of Theorem hashfac
StepHypRef Expression
1 hashf1 14023 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))))
21anidms 570 . 2 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))))
3 enrefg 8660 . . . . 5 (𝐴 ∈ Fin → 𝐴𝐴)
4 f1finf1o 8902 . . . . 5 ((𝐴𝐴𝐴 ∈ Fin) → (𝑓:𝐴1-1𝐴𝑓:𝐴1-1-onto𝐴))
53, 4mpancom 688 . . . 4 (𝐴 ∈ Fin → (𝑓:𝐴1-1𝐴𝑓:𝐴1-1-onto𝐴))
65abbidv 2807 . . 3 (𝐴 ∈ Fin → {𝑓𝑓:𝐴1-1𝐴} = {𝑓𝑓:𝐴1-1-onto𝐴})
76fveq2d 6721 . 2 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}))
8 hashcl 13923 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
9 bcnn 13878 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴)C(♯‘𝐴)) = 1)
108, 9syl 17 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)C(♯‘𝐴)) = 1)
1110oveq2d 7229 . . 3 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))) = ((!‘(♯‘𝐴)) · 1))
128faccld 13850 . . . . 5 (𝐴 ∈ Fin → (!‘(♯‘𝐴)) ∈ ℕ)
1312nncnd 11846 . . . 4 (𝐴 ∈ Fin → (!‘(♯‘𝐴)) ∈ ℂ)
1413mulid1d 10850 . . 3 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · 1) = (!‘(♯‘𝐴)))
1511, 14eqtrd 2777 . 2 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))) = (!‘(♯‘𝐴)))
162, 7, 153eqtr3d 2785 1 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}) = (!‘(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  {cab 2714   class class class wbr 5053  1-1wf1 6377  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  cen 8623  Fincfn 8626  1c1 10730   · cmul 10734  0cn0 12090  !cfa 13839  Ccbc 13868  chash 13896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-fz 13096  df-seq 13575  df-fac 13840  df-bc 13869  df-hash 13897
This theorem is referenced by:  symghash  18770  subfaclefac  32851  poimirlem9  35523
  Copyright terms: Public domain W3C validator