Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfac Structured version   Visualization version   GIF version

Theorem hashfac 13832
 Description: A factorial counts the number of bijections on a finite set. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof shortened by Mario Carneiro, 17-Apr-2015.)
Assertion
Ref Expression
hashfac (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}) = (!‘(♯‘𝐴)))
Distinct variable group:   𝐴,𝑓

Proof of Theorem hashfac
StepHypRef Expression
1 hashf1 13831 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))))
21anidms 570 . 2 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))))
3 enrefg 8542 . . . . 5 (𝐴 ∈ Fin → 𝐴𝐴)
4 f1finf1o 8747 . . . . 5 ((𝐴𝐴𝐴 ∈ Fin) → (𝑓:𝐴1-1𝐴𝑓:𝐴1-1-onto𝐴))
53, 4mpancom 687 . . . 4 (𝐴 ∈ Fin → (𝑓:𝐴1-1𝐴𝑓:𝐴1-1-onto𝐴))
65abbidv 2862 . . 3 (𝐴 ∈ Fin → {𝑓𝑓:𝐴1-1𝐴} = {𝑓𝑓:𝐴1-1-onto𝐴})
76fveq2d 6659 . 2 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1𝐴}) = (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}))
8 hashcl 13733 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
9 bcnn 13688 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴)C(♯‘𝐴)) = 1)
108, 9syl 17 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴)C(♯‘𝐴)) = 1)
1110oveq2d 7161 . . 3 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))) = ((!‘(♯‘𝐴)) · 1))
128faccld 13660 . . . . 5 (𝐴 ∈ Fin → (!‘(♯‘𝐴)) ∈ ℕ)
1312nncnd 11659 . . . 4 (𝐴 ∈ Fin → (!‘(♯‘𝐴)) ∈ ℂ)
1413mulid1d 10665 . . 3 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · 1) = (!‘(♯‘𝐴)))
1511, 14eqtrd 2833 . 2 (𝐴 ∈ Fin → ((!‘(♯‘𝐴)) · ((♯‘𝐴)C(♯‘𝐴))) = (!‘(♯‘𝐴)))
162, 7, 153eqtr3d 2841 1 (𝐴 ∈ Fin → (♯‘{𝑓𝑓:𝐴1-1-onto𝐴}) = (!‘(♯‘𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  {cab 2776   class class class wbr 5034  –1-1→wf1 6329  –1-1-onto→wf1o 6331  ‘cfv 6332  (class class class)co 7145   ≈ cen 8507  Fincfn 8510  1c1 10545   · cmul 10549  ℕ0cn0 11903  !cfa 13649  Ccbc 13678  ♯chash 13706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-pm 8410  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-dju 9332  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-n0 11904  df-xnn0 11976  df-z 11990  df-uz 12252  df-fz 12906  df-seq 13385  df-fac 13650  df-bc 13679  df-hash 13707 This theorem is referenced by:  symghash  18519  subfaclefac  32602  poimirlem9  35217
 Copyright terms: Public domain W3C validator