![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr2 | Structured version Visualization version GIF version |
Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
ellkr2.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ellkr2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ellkr2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
ellkr2 | ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellkr2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
2 | ellkr2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
3 | lkrfval2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lkrfval2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
5 | lkrfval2.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
6 | lkrfval2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
7 | lkrfval2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
8 | 3, 4, 5, 6, 7 | ellkr 39071 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
9 | 1, 2, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
10 | ellkr2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | 10 | biantrurd 532 | . 2 ⊢ (𝜑 → ((𝐺‘𝑋) = 0 ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
12 | 9, 11 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Basecbs 17245 Scalarcsca 17301 0gc0g 17486 LFnlclfn 39039 LKerclk 39067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-lfl 39040 df-lkr 39068 |
This theorem is referenced by: lclkrlem2f 41495 lclkrlem2n 41503 lcfrlem3 41527 lcfrlem25 41550 hdmapellkr 41897 hdmapip0 41898 hdmapinvlem1 41901 |
Copyright terms: Public domain | W3C validator |