![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr2 | Structured version Visualization version GIF version |
Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lkrfval2.v | β’ π = (Baseβπ) |
lkrfval2.d | β’ π· = (Scalarβπ) |
lkrfval2.o | β’ 0 = (0gβπ·) |
lkrfval2.f | β’ πΉ = (LFnlβπ) |
lkrfval2.k | β’ πΎ = (LKerβπ) |
ellkr2.w | β’ (π β π β π) |
ellkr2.g | β’ (π β πΊ β πΉ) |
ellkr2.x | β’ (π β π β π) |
Ref | Expression |
---|---|
ellkr2 | β’ (π β (π β (πΎβπΊ) β (πΊβπ) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellkr2.w | . . 3 β’ (π β π β π) | |
2 | ellkr2.g | . . 3 β’ (π β πΊ β πΉ) | |
3 | lkrfval2.v | . . . 4 β’ π = (Baseβπ) | |
4 | lkrfval2.d | . . . 4 β’ π· = (Scalarβπ) | |
5 | lkrfval2.o | . . . 4 β’ 0 = (0gβπ·) | |
6 | lkrfval2.f | . . . 4 β’ πΉ = (LFnlβπ) | |
7 | lkrfval2.k | . . . 4 β’ πΎ = (LKerβπ) | |
8 | 3, 4, 5, 6, 7 | ellkr 38470 | . . 3 β’ ((π β π β§ πΊ β πΉ) β (π β (πΎβπΊ) β (π β π β§ (πΊβπ) = 0 ))) |
9 | 1, 2, 8 | syl2anc 583 | . 2 β’ (π β (π β (πΎβπΊ) β (π β π β§ (πΊβπ) = 0 ))) |
10 | ellkr2.x | . . 3 β’ (π β π β π) | |
11 | 10 | biantrurd 532 | . 2 β’ (π β ((πΊβπ) = 0 β (π β π β§ (πΊβπ) = 0 ))) |
12 | 9, 11 | bitr4d 282 | 1 β’ (π β (π β (πΎβπΊ) β (πΊβπ) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βcfv 6536 Basecbs 17151 Scalarcsca 17207 0gc0g 17392 LFnlclfn 38438 LKerclk 38466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8821 df-lfl 38439 df-lkr 38467 |
This theorem is referenced by: lclkrlem2f 40894 lclkrlem2n 40902 lcfrlem3 40926 lcfrlem25 40949 hdmapellkr 41296 hdmapip0 41297 hdmapinvlem1 41300 |
Copyright terms: Public domain | W3C validator |