Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr2 Structured version   Visualization version   GIF version

Theorem ellkr2 38455
Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
ellkr2.w (𝜑𝑊𝑌)
ellkr2.g (𝜑𝐺𝐹)
ellkr2.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ellkr2 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝐺𝑋) = 0 ))

Proof of Theorem ellkr2
StepHypRef Expression
1 ellkr2.w . . 3 (𝜑𝑊𝑌)
2 ellkr2.g . . 3 (𝜑𝐺𝐹)
3 lkrfval2.v . . . 4 𝑉 = (Base‘𝑊)
4 lkrfval2.d . . . 4 𝐷 = (Scalar‘𝑊)
5 lkrfval2.o . . . 4 0 = (0g𝐷)
6 lkrfval2.f . . . 4 𝐹 = (LFnl‘𝑊)
7 lkrfval2.k . . . 4 𝐾 = (LKer‘𝑊)
83, 4, 5, 6, 7ellkr 38453 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
91, 2, 8syl2anc 583 . 2 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
10 ellkr2.x . . 3 (𝜑𝑋𝑉)
1110biantrurd 532 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
129, 11bitr4d 282 1 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cfv 6534  Basecbs 17145  Scalarcsca 17201  0gc0g 17386  LFnlclfn 38421  LKerclk 38449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-lfl 38422  df-lkr 38450
This theorem is referenced by:  lclkrlem2f  40877  lclkrlem2n  40885  lcfrlem3  40909  lcfrlem25  40932  hdmapellkr  41279  hdmapip0  41280  hdmapinvlem1  41283
  Copyright terms: Public domain W3C validator