| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr2 | Structured version Visualization version GIF version | ||
| Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| ellkr2.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
| ellkr2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| ellkr2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ellkr2 | ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellkr2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
| 2 | ellkr2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 3 | lkrfval2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lkrfval2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 5 | lkrfval2.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 6 | lkrfval2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 7 | lkrfval2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 8 | 3, 4, 5, 6, 7 | ellkr 39077 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| 9 | 1, 2, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| 10 | ellkr2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 11 | 10 | biantrurd 532 | . 2 ⊢ (𝜑 → ((𝐺‘𝑋) = 0 ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| 12 | 9, 11 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 Basecbs 17185 Scalarcsca 17229 0gc0g 17408 LFnlclfn 39045 LKerclk 39073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-lfl 39046 df-lkr 39074 |
| This theorem is referenced by: lclkrlem2f 41501 lclkrlem2n 41509 lcfrlem3 41533 lcfrlem25 41556 hdmapellkr 41903 hdmapip0 41904 hdmapinvlem1 41907 |
| Copyright terms: Public domain | W3C validator |