Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr2 Structured version   Visualization version   GIF version

Theorem ellkr2 39057
Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
ellkr2.w (𝜑𝑊𝑌)
ellkr2.g (𝜑𝐺𝐹)
ellkr2.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ellkr2 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝐺𝑋) = 0 ))

Proof of Theorem ellkr2
StepHypRef Expression
1 ellkr2.w . . 3 (𝜑𝑊𝑌)
2 ellkr2.g . . 3 (𝜑𝐺𝐹)
3 lkrfval2.v . . . 4 𝑉 = (Base‘𝑊)
4 lkrfval2.d . . . 4 𝐷 = (Scalar‘𝑊)
5 lkrfval2.o . . . 4 0 = (0g𝐷)
6 lkrfval2.f . . . 4 𝐹 = (LFnl‘𝑊)
7 lkrfval2.k . . . 4 𝐾 = (LKer‘𝑊)
83, 4, 5, 6, 7ellkr 39055 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
91, 2, 8syl2anc 584 . 2 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
10 ellkr2.x . . 3 (𝜑𝑋𝑉)
1110biantrurd 532 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
129, 11bitr4d 282 1 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6499  Basecbs 17155  Scalarcsca 17199  0gc0g 17378  LFnlclfn 39023  LKerclk 39051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-lfl 39024  df-lkr 39052
This theorem is referenced by:  lclkrlem2f  41479  lclkrlem2n  41487  lcfrlem3  41511  lcfrlem25  41534  hdmapellkr  41881  hdmapip0  41882  hdmapinvlem1  41885
  Copyright terms: Public domain W3C validator