Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr2 Structured version   Visualization version   GIF version

Theorem ellkr2 39263
Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
ellkr2.w (𝜑𝑊𝑌)
ellkr2.g (𝜑𝐺𝐹)
ellkr2.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ellkr2 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝐺𝑋) = 0 ))

Proof of Theorem ellkr2
StepHypRef Expression
1 ellkr2.w . . 3 (𝜑𝑊𝑌)
2 ellkr2.g . . 3 (𝜑𝐺𝐹)
3 lkrfval2.v . . . 4 𝑉 = (Base‘𝑊)
4 lkrfval2.d . . . 4 𝐷 = (Scalar‘𝑊)
5 lkrfval2.o . . . 4 0 = (0g𝐷)
6 lkrfval2.f . . . 4 𝐹 = (LFnl‘𝑊)
7 lkrfval2.k . . . 4 𝐾 = (LKer‘𝑊)
83, 4, 5, 6, 7ellkr 39261 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
91, 2, 8syl2anc 584 . 2 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
10 ellkr2.x . . 3 (𝜑𝑋𝑉)
1110biantrurd 532 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
129, 11bitr4d 282 1 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cfv 6489  Basecbs 17127  Scalarcsca 17171  0gc0g 17350  LFnlclfn 39229  LKerclk 39257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-lfl 39230  df-lkr 39258
This theorem is referenced by:  lclkrlem2f  41684  lclkrlem2n  41692  lcfrlem3  41716  lcfrlem25  41739  hdmapellkr  42086  hdmapip0  42087  hdmapinvlem1  42090
  Copyright terms: Public domain W3C validator