Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr2 Structured version   Visualization version   GIF version

Theorem ellkr2 38472
Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Baseβ€˜π‘Š)
lkrfval2.d 𝐷 = (Scalarβ€˜π‘Š)
lkrfval2.o 0 = (0gβ€˜π·)
lkrfval2.f 𝐹 = (LFnlβ€˜π‘Š)
lkrfval2.k 𝐾 = (LKerβ€˜π‘Š)
ellkr2.w (πœ‘ β†’ π‘Š ∈ π‘Œ)
ellkr2.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
ellkr2.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
Assertion
Ref Expression
ellkr2 (πœ‘ β†’ (𝑋 ∈ (πΎβ€˜πΊ) ↔ (πΊβ€˜π‘‹) = 0 ))

Proof of Theorem ellkr2
StepHypRef Expression
1 ellkr2.w . . 3 (πœ‘ β†’ π‘Š ∈ π‘Œ)
2 ellkr2.g . . 3 (πœ‘ β†’ 𝐺 ∈ 𝐹)
3 lkrfval2.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
4 lkrfval2.d . . . 4 𝐷 = (Scalarβ€˜π‘Š)
5 lkrfval2.o . . . 4 0 = (0gβ€˜π·)
6 lkrfval2.f . . . 4 𝐹 = (LFnlβ€˜π‘Š)
7 lkrfval2.k . . . 4 𝐾 = (LKerβ€˜π‘Š)
83, 4, 5, 6, 7ellkr 38470 . . 3 ((π‘Š ∈ π‘Œ ∧ 𝐺 ∈ 𝐹) β†’ (𝑋 ∈ (πΎβ€˜πΊ) ↔ (𝑋 ∈ 𝑉 ∧ (πΊβ€˜π‘‹) = 0 )))
91, 2, 8syl2anc 583 . 2 (πœ‘ β†’ (𝑋 ∈ (πΎβ€˜πΊ) ↔ (𝑋 ∈ 𝑉 ∧ (πΊβ€˜π‘‹) = 0 )))
10 ellkr2.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑉)
1110biantrurd 532 . 2 (πœ‘ β†’ ((πΊβ€˜π‘‹) = 0 ↔ (𝑋 ∈ 𝑉 ∧ (πΊβ€˜π‘‹) = 0 )))
129, 11bitr4d 282 1 (πœ‘ β†’ (𝑋 ∈ (πΎβ€˜πΊ) ↔ (πΊβ€˜π‘‹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  β€˜cfv 6536  Basecbs 17151  Scalarcsca 17207  0gc0g 17392  LFnlclfn 38438  LKerclk 38466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8821  df-lfl 38439  df-lkr 38467
This theorem is referenced by:  lclkrlem2f  40894  lclkrlem2n  40902  lcfrlem3  40926  lcfrlem25  40949  hdmapellkr  41296  hdmapip0  41297  hdmapinvlem1  41300
  Copyright terms: Public domain W3C validator