| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr2 | Structured version Visualization version GIF version | ||
| Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| ellkr2.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
| ellkr2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| ellkr2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ellkr2 | ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellkr2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
| 2 | ellkr2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 3 | lkrfval2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lkrfval2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 5 | lkrfval2.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 6 | lkrfval2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 7 | lkrfval2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 8 | 3, 4, 5, 6, 7 | ellkr 39128 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| 9 | 1, 2, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| 10 | ellkr2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 11 | 10 | biantrurd 532 | . 2 ⊢ (𝜑 → ((𝐺‘𝑋) = 0 ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| 12 | 9, 11 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 Basecbs 17115 Scalarcsca 17159 0gc0g 17338 LFnlclfn 39096 LKerclk 39124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-lfl 39097 df-lkr 39125 |
| This theorem is referenced by: lclkrlem2f 41551 lclkrlem2n 41559 lcfrlem3 41583 lcfrlem25 41606 hdmapellkr 41953 hdmapip0 41954 hdmapinvlem1 41957 |
| Copyright terms: Public domain | W3C validator |