Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr2 Structured version   Visualization version   GIF version

Theorem ellkr2 36292
Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
ellkr2.w (𝜑𝑊𝑌)
ellkr2.g (𝜑𝐺𝐹)
ellkr2.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ellkr2 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝐺𝑋) = 0 ))

Proof of Theorem ellkr2
StepHypRef Expression
1 ellkr2.w . . 3 (𝜑𝑊𝑌)
2 ellkr2.g . . 3 (𝜑𝐺𝐹)
3 lkrfval2.v . . . 4 𝑉 = (Base‘𝑊)
4 lkrfval2.d . . . 4 𝐷 = (Scalar‘𝑊)
5 lkrfval2.o . . . 4 0 = (0g𝐷)
6 lkrfval2.f . . . 4 𝐹 = (LFnl‘𝑊)
7 lkrfval2.k . . . 4 𝐾 = (LKer‘𝑊)
83, 4, 5, 6, 7ellkr 36290 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
91, 2, 8syl2anc 587 . 2 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
10 ellkr2.x . . 3 (𝜑𝑋𝑉)
1110biantrurd 536 . 2 (𝜑 → ((𝐺𝑋) = 0 ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
129, 11bitr4d 285 1 (𝜑 → (𝑋 ∈ (𝐾𝐺) ↔ (𝐺𝑋) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  cfv 6338  Basecbs 16474  Scalarcsca 16559  0gc0g 16704  LFnlclfn 36258  LKerclk 36286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-ov 7143  df-oprab 7144  df-mpo 7145  df-map 8393  df-lfl 36259  df-lkr 36287
This theorem is referenced by:  lclkrlem2f  38713  lclkrlem2n  38721  lcfrlem3  38745  lcfrlem25  38768  hdmapellkr  39115  hdmapip0  39116  hdmapinvlem1  39119
  Copyright terms: Public domain W3C validator