![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr2 | Structured version Visualization version GIF version |
Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
ellkr2.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ellkr2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ellkr2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
ellkr2 | ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellkr2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
2 | ellkr2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
3 | lkrfval2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lkrfval2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
5 | lkrfval2.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
6 | lkrfval2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
7 | lkrfval2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
8 | 3, 4, 5, 6, 7 | ellkr 38453 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
9 | 1, 2, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
10 | ellkr2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | 10 | biantrurd 532 | . 2 ⊢ (𝜑 → ((𝐺‘𝑋) = 0 ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
12 | 9, 11 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6534 Basecbs 17145 Scalarcsca 17201 0gc0g 17386 LFnlclfn 38421 LKerclk 38449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-map 8819 df-lfl 38422 df-lkr 38450 |
This theorem is referenced by: lclkrlem2f 40877 lclkrlem2n 40885 lcfrlem3 40909 lcfrlem25 40932 hdmapellkr 41279 hdmapip0 41280 hdmapinvlem1 41283 |
Copyright terms: Public domain | W3C validator |