Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr | Structured version Visualization version GIF version |
Description: Membership in the kernel of a functional. (elnlfn 30191 analog.) (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
ellkr | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrfval2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | lkrfval2.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
3 | lkrfval2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
4 | lkrfval2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
5 | 1, 2, 3, 4 | lkrval 37029 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
6 | 5 | eleq2d 2824 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ 𝑋 ∈ (◡𝐺 “ { 0 }))) |
7 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
8 | lkrfval2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
9 | 1, 7, 8, 3 | lflf 37004 | . . . 4 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
10 | ffn 6584 | . . . 4 ⊢ (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉) | |
11 | elpreima 6917 | . . . 4 ⊢ (𝐺 Fn 𝑉 → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }))) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }))) |
13 | fvex 6769 | . . . . 5 ⊢ (𝐺‘𝑋) ∈ V | |
14 | 13 | elsn 4573 | . . . 4 ⊢ ((𝐺‘𝑋) ∈ { 0 } ↔ (𝐺‘𝑋) = 0 ) |
15 | 14 | anbi2i 622 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 )) |
16 | 12, 15 | bitrdi 286 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
17 | 6, 16 | bitrd 278 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 Basecbs 16840 Scalarcsca 16891 0gc0g 17067 LFnlclfn 36998 LKerclk 37026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-lfl 36999 df-lkr 37027 |
This theorem is referenced by: lkrval2 37031 ellkr2 37032 lkrcl 37033 lkrf0 37034 lkrlss 37036 lkrsc 37038 eqlkr 37040 lkrlsp 37043 lkrlsp2 37044 lshpkr 37058 lkrin 37105 dochfln0 39418 |
Copyright terms: Public domain | W3C validator |