Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr Structured version   Visualization version   GIF version

Theorem ellkr 36385
Description: Membership in the kernel of a functional. (elnlfn 29711 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
ellkr ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))

Proof of Theorem ellkr
StepHypRef Expression
1 lkrfval2.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lkrfval2.o . . . 4 0 = (0g𝐷)
3 lkrfval2.f . . . 4 𝐹 = (LFnl‘𝑊)
4 lkrfval2.k . . . 4 𝐾 = (LKer‘𝑊)
51, 2, 3, 4lkrval 36384 . . 3 ((𝑊𝑌𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
65eleq2d 2875 . 2 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ 𝑋 ∈ (𝐺 “ { 0 })))
7 eqid 2798 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
8 lkrfval2.v . . . . 5 𝑉 = (Base‘𝑊)
91, 7, 8, 3lflf 36359 . . . 4 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
10 ffn 6487 . . . 4 (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉)
11 elpreima 6805 . . . 4 (𝐺 Fn 𝑉 → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 })))
129, 10, 113syl 18 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 })))
13 fvex 6658 . . . . 5 (𝐺𝑋) ∈ V
1413elsn 4540 . . . 4 ((𝐺𝑋) ∈ { 0 } ↔ (𝐺𝑋) = 0 )
1514anbi2i 625 . . 3 ((𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 ))
1612, 15syl6bb 290 . 2 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
176, 16bitrd 282 1 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {csn 4525  ccnv 5518  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  Basecbs 16475  Scalarcsca 16560  0gc0g 16705  LFnlclfn 36353  LKerclk 36381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-lfl 36354  df-lkr 36382
This theorem is referenced by:  lkrval2  36386  ellkr2  36387  lkrcl  36388  lkrf0  36389  lkrlss  36391  lkrsc  36393  eqlkr  36395  lkrlsp  36398  lkrlsp2  36399  lshpkr  36413  lkrin  36460  dochfln0  38773
  Copyright terms: Public domain W3C validator