Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr Structured version   Visualization version   GIF version

Theorem ellkr 39045
Description: Membership in the kernel of a functional. (elnlfn 31960 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
ellkr ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))

Proof of Theorem ellkr
StepHypRef Expression
1 lkrfval2.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lkrfval2.o . . . 4 0 = (0g𝐷)
3 lkrfval2.f . . . 4 𝐹 = (LFnl‘𝑊)
4 lkrfval2.k . . . 4 𝐾 = (LKer‘𝑊)
51, 2, 3, 4lkrval 39044 . . 3 ((𝑊𝑌𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
65eleq2d 2830 . 2 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ 𝑋 ∈ (𝐺 “ { 0 })))
7 eqid 2740 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
8 lkrfval2.v . . . . 5 𝑉 = (Base‘𝑊)
91, 7, 8, 3lflf 39019 . . . 4 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
10 ffn 6747 . . . 4 (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉)
11 elpreima 7091 . . . 4 (𝐺 Fn 𝑉 → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 })))
129, 10, 113syl 18 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 })))
13 fvex 6933 . . . . 5 (𝐺𝑋) ∈ V
1413elsn 4663 . . . 4 ((𝐺𝑋) ∈ { 0 } ↔ (𝐺𝑋) = 0 )
1514anbi2i 622 . . 3 ((𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 ))
1612, 15bitrdi 287 . 2 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
176, 16bitrd 279 1 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {csn 4648  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  Basecbs 17258  Scalarcsca 17314  0gc0g 17499  LFnlclfn 39013  LKerclk 39041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-lfl 39014  df-lkr 39042
This theorem is referenced by:  lkrval2  39046  ellkr2  39047  lkrcl  39048  lkrf0  39049  lkrlss  39051  lkrsc  39053  eqlkr  39055  lkrlsp  39058  lkrlsp2  39059  lshpkr  39073  lkrin  39120  dochfln0  41434
  Copyright terms: Public domain W3C validator