Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr Structured version   Visualization version   GIF version

Theorem ellkr 37082
Description: Membership in the kernel of a functional. (elnlfn 30269 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
ellkr ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))

Proof of Theorem ellkr
StepHypRef Expression
1 lkrfval2.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lkrfval2.o . . . 4 0 = (0g𝐷)
3 lkrfval2.f . . . 4 𝐹 = (LFnl‘𝑊)
4 lkrfval2.k . . . 4 𝐾 = (LKer‘𝑊)
51, 2, 3, 4lkrval 37081 . . 3 ((𝑊𝑌𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
65eleq2d 2825 . 2 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ 𝑋 ∈ (𝐺 “ { 0 })))
7 eqid 2739 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
8 lkrfval2.v . . . . 5 𝑉 = (Base‘𝑊)
91, 7, 8, 3lflf 37056 . . . 4 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
10 ffn 6596 . . . 4 (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉)
11 elpreima 6929 . . . 4 (𝐺 Fn 𝑉 → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 })))
129, 10, 113syl 18 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 })))
13 fvex 6781 . . . . 5 (𝐺𝑋) ∈ V
1413elsn 4581 . . . 4 ((𝐺𝑋) ∈ { 0 } ↔ (𝐺𝑋) = 0 )
1514anbi2i 622 . . 3 ((𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 ))
1612, 15bitrdi 286 . 2 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
176, 16bitrd 278 1 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  {csn 4566  ccnv 5587  cima 5591   Fn wfn 6425  wf 6426  cfv 6430  Basecbs 16893  Scalarcsca 16946  0gc0g 17131  LFnlclfn 37050  LKerclk 37078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-lfl 37051  df-lkr 37079
This theorem is referenced by:  lkrval2  37083  ellkr2  37084  lkrcl  37085  lkrf0  37086  lkrlss  37088  lkrsc  37090  eqlkr  37092  lkrlsp  37095  lkrlsp2  37096  lshpkr  37110  lkrin  37157  dochfln0  39470
  Copyright terms: Public domain W3C validator