| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr | Structured version Visualization version GIF version | ||
| Description: Membership in the kernel of a functional. (elnlfn 31872 analog.) (Contributed by NM, 16-Apr-2014.) |
| Ref | Expression |
|---|---|
| lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| ellkr | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrfval2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | lkrfval2.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 3 | lkrfval2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 4 | lkrfval2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 5 | 1, 2, 3, 4 | lkrval 39067 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ 𝑋 ∈ (◡𝐺 “ { 0 }))) |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 8 | lkrfval2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | 1, 7, 8, 3 | lflf 39042 | . . . 4 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
| 10 | ffn 6652 | . . . 4 ⊢ (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉) | |
| 11 | elpreima 6992 | . . . 4 ⊢ (𝐺 Fn 𝑉 → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }))) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }))) |
| 13 | fvex 6835 | . . . . 5 ⊢ (𝐺‘𝑋) ∈ V | |
| 14 | 13 | elsn 4592 | . . . 4 ⊢ ((𝐺‘𝑋) ∈ { 0 } ↔ (𝐺‘𝑋) = 0 ) |
| 15 | 14 | anbi2i 623 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 )) |
| 16 | 12, 15 | bitrdi 287 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| 17 | 6, 16 | bitrd 279 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 ◡ccnv 5618 “ cima 5622 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 Basecbs 17120 Scalarcsca 17164 0gc0g 17343 LFnlclfn 39036 LKerclk 39064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-lfl 39037 df-lkr 39065 |
| This theorem is referenced by: lkrval2 39069 ellkr2 39070 lkrcl 39071 lkrf0 39072 lkrlss 39074 lkrsc 39076 eqlkr 39078 lkrlsp 39081 lkrlsp2 39082 lshpkr 39096 lkrin 39143 dochfln0 41456 |
| Copyright terms: Public domain | W3C validator |