| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr | Structured version Visualization version GIF version | ||
| Description: Membership in the kernel of a functional. (elnlfn 31908 analog.) (Contributed by NM, 16-Apr-2014.) |
| Ref | Expression |
|---|---|
| lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| ellkr | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrfval2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | lkrfval2.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 3 | lkrfval2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 4 | lkrfval2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
| 5 | 1, 2, 3, 4 | lkrval 39197 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| 6 | 5 | eleq2d 2817 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ 𝑋 ∈ (◡𝐺 “ { 0 }))) |
| 7 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 8 | lkrfval2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | 1, 7, 8, 3 | lflf 39172 | . . . 4 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
| 10 | ffn 6651 | . . . 4 ⊢ (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉) | |
| 11 | elpreima 6991 | . . . 4 ⊢ (𝐺 Fn 𝑉 → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }))) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }))) |
| 13 | fvex 6835 | . . . . 5 ⊢ (𝐺‘𝑋) ∈ V | |
| 14 | 13 | elsn 4588 | . . . 4 ⊢ ((𝐺‘𝑋) ∈ { 0 } ↔ (𝐺‘𝑋) = 0 ) |
| 15 | 14 | anbi2i 623 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) ∈ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 )) |
| 16 | 12, 15 | bitrdi 287 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (◡𝐺 “ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| 17 | 6, 16 | bitrd 279 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 ◡ccnv 5613 “ cima 5617 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 Basecbs 17120 Scalarcsca 17164 0gc0g 17343 LFnlclfn 39166 LKerclk 39194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-lfl 39167 df-lkr 39195 |
| This theorem is referenced by: lkrval2 39199 ellkr2 39200 lkrcl 39201 lkrf0 39202 lkrlss 39204 lkrsc 39206 eqlkr 39208 lkrlsp 39211 lkrlsp2 39212 lshpkr 39226 lkrin 39273 dochfln0 41586 |
| Copyright terms: Public domain | W3C validator |