Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellkr Structured version   Visualization version   GIF version

Theorem ellkr 35618
Description: Membership in the kernel of a functional. (elnlfn 29476 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
ellkr ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))

Proof of Theorem ellkr
StepHypRef Expression
1 lkrfval2.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lkrfval2.o . . . 4 0 = (0g𝐷)
3 lkrfval2.f . . . 4 𝐹 = (LFnl‘𝑊)
4 lkrfval2.k . . . 4 𝐾 = (LKer‘𝑊)
51, 2, 3, 4lkrval 35617 . . 3 ((𝑊𝑌𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
65eleq2d 2845 . 2 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ 𝑋 ∈ (𝐺 “ { 0 })))
7 eqid 2772 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
8 lkrfval2.v . . . . 5 𝑉 = (Base‘𝑊)
91, 7, 8, 3lflf 35592 . . . 4 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
10 ffn 6338 . . . 4 (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉)
11 elpreima 6647 . . . 4 (𝐺 Fn 𝑉 → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 })))
129, 10, 113syl 18 . . 3 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 })))
13 fvex 6506 . . . . 5 (𝐺𝑋) ∈ V
1413elsn 4450 . . . 4 ((𝐺𝑋) ∈ { 0 } ↔ (𝐺𝑋) = 0 )
1514anbi2i 613 . . 3 ((𝑋𝑉 ∧ (𝐺𝑋) ∈ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 ))
1612, 15syl6bb 279 . 2 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐺 “ { 0 }) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
176, 16bitrd 271 1 ((𝑊𝑌𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  {csn 4435  ccnv 5399  cima 5403   Fn wfn 6177  wf 6178  cfv 6182  Basecbs 16329  Scalarcsca 16414  0gc0g 16559  LFnlclfn 35586  LKerclk 35614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-map 8200  df-lfl 35587  df-lkr 35615
This theorem is referenced by:  lkrval2  35619  ellkr2  35620  lkrcl  35621  lkrf0  35622  lkrlss  35624  lkrsc  35626  eqlkr  35628  lkrlsp  35631  lkrlsp2  35632  lshpkr  35646  lkrin  35693  dochfln0  38006
  Copyright terms: Public domain W3C validator