![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellkr | Structured version Visualization version GIF version |
Description: Membership in the kernel of a functional. (elnlfn 31436 analog.) (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
lkrfval2.v | β’ π = (Baseβπ) |
lkrfval2.d | β’ π· = (Scalarβπ) |
lkrfval2.o | β’ 0 = (0gβπ·) |
lkrfval2.f | β’ πΉ = (LFnlβπ) |
lkrfval2.k | β’ πΎ = (LKerβπ) |
Ref | Expression |
---|---|
ellkr | β’ ((π β π β§ πΊ β πΉ) β (π β (πΎβπΊ) β (π β π β§ (πΊβπ) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrfval2.d | . . . 4 β’ π· = (Scalarβπ) | |
2 | lkrfval2.o | . . . 4 β’ 0 = (0gβπ·) | |
3 | lkrfval2.f | . . . 4 β’ πΉ = (LFnlβπ) | |
4 | lkrfval2.k | . . . 4 β’ πΎ = (LKerβπ) | |
5 | 1, 2, 3, 4 | lkrval 38261 | . . 3 β’ ((π β π β§ πΊ β πΉ) β (πΎβπΊ) = (β‘πΊ β { 0 })) |
6 | 5 | eleq2d 2819 | . 2 β’ ((π β π β§ πΊ β πΉ) β (π β (πΎβπΊ) β π β (β‘πΊ β { 0 }))) |
7 | eqid 2732 | . . . . 5 β’ (Baseβπ·) = (Baseβπ·) | |
8 | lkrfval2.v | . . . . 5 β’ π = (Baseβπ) | |
9 | 1, 7, 8, 3 | lflf 38236 | . . . 4 β’ ((π β π β§ πΊ β πΉ) β πΊ:πβΆ(Baseβπ·)) |
10 | ffn 6717 | . . . 4 β’ (πΊ:πβΆ(Baseβπ·) β πΊ Fn π) | |
11 | elpreima 7059 | . . . 4 β’ (πΊ Fn π β (π β (β‘πΊ β { 0 }) β (π β π β§ (πΊβπ) β { 0 }))) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 β’ ((π β π β§ πΊ β πΉ) β (π β (β‘πΊ β { 0 }) β (π β π β§ (πΊβπ) β { 0 }))) |
13 | fvex 6904 | . . . . 5 β’ (πΊβπ) β V | |
14 | 13 | elsn 4643 | . . . 4 β’ ((πΊβπ) β { 0 } β (πΊβπ) = 0 ) |
15 | 14 | anbi2i 623 | . . 3 β’ ((π β π β§ (πΊβπ) β { 0 }) β (π β π β§ (πΊβπ) = 0 )) |
16 | 12, 15 | bitrdi 286 | . 2 β’ ((π β π β§ πΊ β πΉ) β (π β (β‘πΊ β { 0 }) β (π β π β§ (πΊβπ) = 0 ))) |
17 | 6, 16 | bitrd 278 | 1 β’ ((π β π β§ πΊ β πΉ) β (π β (πΎβπΊ) β (π β π β§ (πΊβπ) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {csn 4628 β‘ccnv 5675 β cima 5679 Fn wfn 6538 βΆwf 6539 βcfv 6543 Basecbs 17148 Scalarcsca 17204 0gc0g 17389 LFnlclfn 38230 LKerclk 38258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-lfl 38231 df-lkr 38259 |
This theorem is referenced by: lkrval2 38263 ellkr2 38264 lkrcl 38265 lkrf0 38266 lkrlss 38268 lkrsc 38270 eqlkr 38272 lkrlsp 38275 lkrlsp2 38276 lshpkr 38290 lkrin 38337 dochfln0 40651 |
Copyright terms: Public domain | W3C validator |