Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlss Structured version   Visualization version   GIF version

Theorem lkrlss 39118
Description: The kernel of a linear functional is a subspace. (nlelshi 32046 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrlss.f 𝐹 = (LFnl‘𝑊)
lkrlss.k 𝐾 = (LKer‘𝑊)
lkrlss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lkrlss ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)

Proof of Theorem lkrlss
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2736 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4 lkrlss.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrlss.k . . . 4 𝐾 = (LKer‘𝑊)
61, 2, 3, 4, 5lkrval2 39113 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))})
7 ssrab2 4060 . . 3 {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))} ⊆ (Base‘𝑊)
86, 7eqsstrdi 4008 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ⊆ (Base‘𝑊))
9 eqid 2736 . . . . . 6 (0g𝑊) = (0g𝑊)
101, 9lmod0vcl 20853 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ (Base‘𝑊))
1110adantr 480 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (Base‘𝑊))
122, 3, 9, 4lfl0 39088 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))
131, 2, 3, 4, 5ellkr 39112 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((0g𝑊) ∈ (𝐾𝐺) ↔ ((0g𝑊) ∈ (Base‘𝑊) ∧ (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))))
1411, 12, 13mpbir2and 713 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (𝐾𝐺))
1514ne0d 4322 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ≠ ∅)
16 simplll 774 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑊 ∈ LMod)
17 simplr 768 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
18 simpllr 775 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝐺𝐹)
19 simprl 770 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (𝐾𝐺))
201, 4, 5lkrcl 39115 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → 𝑥 ∈ (Base‘𝑊))
2116, 18, 19, 20syl3anc 1373 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (Base‘𝑊))
22 eqid 2736 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
23 eqid 2736 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
241, 2, 22, 23lmodvscl 20840 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
2516, 17, 21, 24syl3anc 1373 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
26 simprr 772 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (𝐾𝐺))
271, 4, 5lkrcl 39115 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → 𝑦 ∈ (Base‘𝑊))
2816, 18, 26, 27syl3anc 1373 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (Base‘𝑊))
29 eqid 2736 . . . . . . 7 (+g𝑊) = (+g𝑊)
301, 29lmodvacl 20837 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
3116, 25, 28, 30syl3anc 1373 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
32 eqid 2736 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
33 eqid 2736 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
341, 29, 2, 22, 23, 32, 33, 4lfli 39084 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
3516, 18, 17, 21, 28, 34syl113anc 1384 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
362, 3, 4, 5lkrf0 39116 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3716, 18, 19, 36syl3anc 1373 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3837oveq2d 7426 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
392lmodring 20830 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
4016, 39syl 17 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Ring)
4123, 33, 3ringrz 20259 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4240, 17, 41syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4338, 42eqtrd 2771 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (0g‘(Scalar‘𝑊)))
442, 3, 4, 5lkrf0 39116 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4516, 18, 26, 44syl3anc 1373 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4643, 45oveq12d 7428 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
472lmodfgrp 20831 . . . . . . . 8 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
4816, 47syl 17 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Grp)
4923, 3grpidcl 18953 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
5023, 32, 3grplid 18955 . . . . . . 7 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5148, 49, 50syl2anc2 585 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5235, 46, 513eqtrd 2775 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))
531, 2, 3, 4, 5ellkr 39112 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5453ad2antrr 726 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5531, 52, 54mpbir2and 713 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5655ralrimivva 3188 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5756ralrimiva 3133 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
58 lkrlss.s . . 3 𝑆 = (LSubSp‘𝑊)
592, 23, 1, 29, 22, 58islss 20896 . 2 ((𝐾𝐺) ∈ 𝑆 ↔ ((𝐾𝐺) ⊆ (Base‘𝑊) ∧ (𝐾𝐺) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺)))
608, 15, 57, 59syl3anbrc 1344 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  wss 3931  c0 4313  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458  Grpcgrp 18921  Ringcrg 20198  LModclmod 20822  LSubSpclss 20893  LFnlclfn 39080  LKerclk 39108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lfl 39081  df-lkr 39109
This theorem is referenced by:  lkrssv  39119  lkrlsp  39125  lkrlsp3  39127  lkrshp  39128  lclkrlem2f  41536  lclkrlem2n  41544  lclkrlem2v  41552  lcfrlem25  41591  lcfrlem35  41601
  Copyright terms: Public domain W3C validator