Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlss Structured version   Visualization version   GIF version

Theorem lkrlss 39061
Description: The kernel of a linear functional is a subspace. (nlelshi 31962 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrlss.f 𝐹 = (LFnl‘𝑊)
lkrlss.k 𝐾 = (LKer‘𝑊)
lkrlss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lkrlss ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)

Proof of Theorem lkrlss
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2729 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4 lkrlss.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrlss.k . . . 4 𝐾 = (LKer‘𝑊)
61, 2, 3, 4, 5lkrval2 39056 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))})
7 ssrab2 4039 . . 3 {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))} ⊆ (Base‘𝑊)
86, 7eqsstrdi 3988 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ⊆ (Base‘𝑊))
9 eqid 2729 . . . . . 6 (0g𝑊) = (0g𝑊)
101, 9lmod0vcl 20773 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ (Base‘𝑊))
1110adantr 480 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (Base‘𝑊))
122, 3, 9, 4lfl0 39031 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))
131, 2, 3, 4, 5ellkr 39055 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((0g𝑊) ∈ (𝐾𝐺) ↔ ((0g𝑊) ∈ (Base‘𝑊) ∧ (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))))
1411, 12, 13mpbir2and 713 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (𝐾𝐺))
1514ne0d 4301 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ≠ ∅)
16 simplll 774 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑊 ∈ LMod)
17 simplr 768 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
18 simpllr 775 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝐺𝐹)
19 simprl 770 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (𝐾𝐺))
201, 4, 5lkrcl 39058 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → 𝑥 ∈ (Base‘𝑊))
2116, 18, 19, 20syl3anc 1373 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (Base‘𝑊))
22 eqid 2729 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
23 eqid 2729 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
241, 2, 22, 23lmodvscl 20760 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
2516, 17, 21, 24syl3anc 1373 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
26 simprr 772 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (𝐾𝐺))
271, 4, 5lkrcl 39058 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → 𝑦 ∈ (Base‘𝑊))
2816, 18, 26, 27syl3anc 1373 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (Base‘𝑊))
29 eqid 2729 . . . . . . 7 (+g𝑊) = (+g𝑊)
301, 29lmodvacl 20757 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
3116, 25, 28, 30syl3anc 1373 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
32 eqid 2729 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
33 eqid 2729 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
341, 29, 2, 22, 23, 32, 33, 4lfli 39027 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
3516, 18, 17, 21, 28, 34syl113anc 1384 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
362, 3, 4, 5lkrf0 39059 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3716, 18, 19, 36syl3anc 1373 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3837oveq2d 7385 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
392lmodring 20750 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
4016, 39syl 17 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Ring)
4123, 33, 3ringrz 20179 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4240, 17, 41syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4338, 42eqtrd 2764 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (0g‘(Scalar‘𝑊)))
442, 3, 4, 5lkrf0 39059 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4516, 18, 26, 44syl3anc 1373 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4643, 45oveq12d 7387 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
472lmodfgrp 20751 . . . . . . . 8 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
4816, 47syl 17 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Grp)
4923, 3grpidcl 18873 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
5023, 32, 3grplid 18875 . . . . . . 7 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5148, 49, 50syl2anc2 585 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5235, 46, 513eqtrd 2768 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))
531, 2, 3, 4, 5ellkr 39055 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5453ad2antrr 726 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5531, 52, 54mpbir2and 713 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5655ralrimivva 3178 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5756ralrimiva 3125 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
58 lkrlss.s . . 3 𝑆 = (LSubSp‘𝑊)
592, 23, 1, 29, 22, 58islss 20816 . 2 ((𝐾𝐺) ∈ 𝑆 ↔ ((𝐾𝐺) ⊆ (Base‘𝑊) ∧ (𝐾𝐺) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺)))
608, 15, 57, 59syl3anbrc 1344 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  wss 3911  c0 4292  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  Grpcgrp 18841  Ringcrg 20118  LModclmod 20742  LSubSpclss 20813  LFnlclfn 39023  LKerclk 39051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20744  df-lss 20814  df-lfl 39024  df-lkr 39052
This theorem is referenced by:  lkrssv  39062  lkrlsp  39068  lkrlsp3  39070  lkrshp  39071  lclkrlem2f  41479  lclkrlem2n  41487  lclkrlem2v  41495  lcfrlem25  41534  lcfrlem35  41544
  Copyright terms: Public domain W3C validator