Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlss Structured version   Visualization version   GIF version

Theorem lkrlss 38793
Description: The kernel of a linear functional is a subspace. (nlelshi 31993 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrlss.f 𝐹 = (LFnl‘𝑊)
lkrlss.k 𝐾 = (LKer‘𝑊)
lkrlss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lkrlss ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)

Proof of Theorem lkrlss
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2726 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2726 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4 lkrlss.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrlss.k . . . 4 𝐾 = (LKer‘𝑊)
61, 2, 3, 4, 5lkrval2 38788 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))})
7 ssrab2 4076 . . 3 {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))} ⊆ (Base‘𝑊)
86, 7eqsstrdi 4034 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ⊆ (Base‘𝑊))
9 eqid 2726 . . . . . 6 (0g𝑊) = (0g𝑊)
101, 9lmod0vcl 20867 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ (Base‘𝑊))
1110adantr 479 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (Base‘𝑊))
122, 3, 9, 4lfl0 38763 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))
131, 2, 3, 4, 5ellkr 38787 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((0g𝑊) ∈ (𝐾𝐺) ↔ ((0g𝑊) ∈ (Base‘𝑊) ∧ (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))))
1411, 12, 13mpbir2and 711 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (𝐾𝐺))
1514ne0d 4338 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ≠ ∅)
16 simplll 773 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑊 ∈ LMod)
17 simplr 767 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
18 simpllr 774 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝐺𝐹)
19 simprl 769 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (𝐾𝐺))
201, 4, 5lkrcl 38790 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → 𝑥 ∈ (Base‘𝑊))
2116, 18, 19, 20syl3anc 1368 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (Base‘𝑊))
22 eqid 2726 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
23 eqid 2726 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
241, 2, 22, 23lmodvscl 20854 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
2516, 17, 21, 24syl3anc 1368 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
26 simprr 771 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (𝐾𝐺))
271, 4, 5lkrcl 38790 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → 𝑦 ∈ (Base‘𝑊))
2816, 18, 26, 27syl3anc 1368 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (Base‘𝑊))
29 eqid 2726 . . . . . . 7 (+g𝑊) = (+g𝑊)
301, 29lmodvacl 20851 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
3116, 25, 28, 30syl3anc 1368 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
32 eqid 2726 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
33 eqid 2726 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
341, 29, 2, 22, 23, 32, 33, 4lfli 38759 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
3516, 18, 17, 21, 28, 34syl113anc 1379 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
362, 3, 4, 5lkrf0 38791 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3716, 18, 19, 36syl3anc 1368 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3837oveq2d 7440 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
392lmodring 20844 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
4016, 39syl 17 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Ring)
4123, 33, 3ringrz 20273 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4240, 17, 41syl2anc 582 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4338, 42eqtrd 2766 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (0g‘(Scalar‘𝑊)))
442, 3, 4, 5lkrf0 38791 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4516, 18, 26, 44syl3anc 1368 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4643, 45oveq12d 7442 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
472lmodfgrp 20845 . . . . . . . 8 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
4816, 47syl 17 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Grp)
4923, 3grpidcl 18960 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
5023, 32, 3grplid 18962 . . . . . . 7 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5148, 49, 50syl2anc2 583 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5235, 46, 513eqtrd 2770 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))
531, 2, 3, 4, 5ellkr 38787 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5453ad2antrr 724 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5531, 52, 54mpbir2and 711 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5655ralrimivva 3191 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5756ralrimiva 3136 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
58 lkrlss.s . . 3 𝑆 = (LSubSp‘𝑊)
592, 23, 1, 29, 22, 58islss 20911 . 2 ((𝐾𝐺) ∈ 𝑆 ↔ ((𝐾𝐺) ⊆ (Base‘𝑊) ∧ (𝐾𝐺) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺)))
608, 15, 57, 59syl3anbrc 1340 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  {crab 3419  wss 3947  c0 4325  cfv 6554  (class class class)co 7424  Basecbs 17213  +gcplusg 17266  .rcmulr 17267  Scalarcsca 17269   ·𝑠 cvsca 17270  0gc0g 17454  Grpcgrp 18928  Ringcrg 20216  LModclmod 20836  LSubSpclss 20908  LFnlclfn 38755  LKerclk 38783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-sbg 18933  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-lmod 20838  df-lss 20909  df-lfl 38756  df-lkr 38784
This theorem is referenced by:  lkrssv  38794  lkrlsp  38800  lkrlsp3  38802  lkrshp  38803  lclkrlem2f  41211  lclkrlem2n  41219  lclkrlem2v  41227  lcfrlem25  41266  lcfrlem35  41276
  Copyright terms: Public domain W3C validator