Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlss Structured version   Visualization version   GIF version

Theorem lkrlss 37413
Description: The kernel of a linear functional is a subspace. (nlelshi 30776 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrlss.f 𝐹 = (LFnl‘𝑊)
lkrlss.k 𝐾 = (LKer‘𝑊)
lkrlss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lkrlss ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)

Proof of Theorem lkrlss
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2737 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2737 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4 lkrlss.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrlss.k . . . 4 𝐾 = (LKer‘𝑊)
61, 2, 3, 4, 5lkrval2 37408 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))})
7 ssrab2 4032 . . 3 {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))} ⊆ (Base‘𝑊)
86, 7eqsstrdi 3993 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ⊆ (Base‘𝑊))
9 eqid 2737 . . . . . 6 (0g𝑊) = (0g𝑊)
101, 9lmod0vcl 20262 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ (Base‘𝑊))
1110adantr 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (Base‘𝑊))
122, 3, 9, 4lfl0 37383 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))
131, 2, 3, 4, 5ellkr 37407 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((0g𝑊) ∈ (𝐾𝐺) ↔ ((0g𝑊) ∈ (Base‘𝑊) ∧ (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))))
1411, 12, 13mpbir2and 711 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (𝐾𝐺))
1514ne0d 4290 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ≠ ∅)
16 simplll 773 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑊 ∈ LMod)
17 simplr 767 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
18 simpllr 774 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝐺𝐹)
19 simprl 769 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (𝐾𝐺))
201, 4, 5lkrcl 37410 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → 𝑥 ∈ (Base‘𝑊))
2116, 18, 19, 20syl3anc 1371 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (Base‘𝑊))
22 eqid 2737 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
23 eqid 2737 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
241, 2, 22, 23lmodvscl 20250 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
2516, 17, 21, 24syl3anc 1371 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
26 simprr 771 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (𝐾𝐺))
271, 4, 5lkrcl 37410 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → 𝑦 ∈ (Base‘𝑊))
2816, 18, 26, 27syl3anc 1371 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (Base‘𝑊))
29 eqid 2737 . . . . . . 7 (+g𝑊) = (+g𝑊)
301, 29lmodvacl 20247 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
3116, 25, 28, 30syl3anc 1371 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
32 eqid 2737 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
33 eqid 2737 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
341, 29, 2, 22, 23, 32, 33, 4lfli 37379 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
3516, 18, 17, 21, 28, 34syl113anc 1382 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
362, 3, 4, 5lkrf0 37411 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3716, 18, 19, 36syl3anc 1371 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3837oveq2d 7362 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
392lmodring 20241 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
4016, 39syl 17 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Ring)
4123, 33, 3ringrz 19926 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4240, 17, 41syl2anc 585 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4338, 42eqtrd 2777 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (0g‘(Scalar‘𝑊)))
442, 3, 4, 5lkrf0 37411 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4516, 18, 26, 44syl3anc 1371 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4643, 45oveq12d 7364 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
472lmodfgrp 20242 . . . . . . . 8 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
4816, 47syl 17 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Grp)
4923, 3grpidcl 18708 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
5023, 32, 3grplid 18710 . . . . . . 7 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5148, 49, 50syl2anc2 586 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5235, 46, 513eqtrd 2781 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))
531, 2, 3, 4, 5ellkr 37407 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5453ad2antrr 724 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5531, 52, 54mpbir2and 711 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5655ralrimivva 3195 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5756ralrimiva 3141 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
58 lkrlss.s . . 3 𝑆 = (LSubSp‘𝑊)
592, 23, 1, 29, 22, 58islss 20306 . 2 ((𝐾𝐺) ∈ 𝑆 ↔ ((𝐾𝐺) ⊆ (Base‘𝑊) ∧ (𝐾𝐺) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺)))
608, 15, 57, 59syl3anbrc 1343 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wne 2941  wral 3062  {crab 3405  wss 3905  c0 4277  cfv 6488  (class class class)co 7346  Basecbs 17014  +gcplusg 17064  .rcmulr 17065  Scalarcsca 17067   ·𝑠 cvsca 17068  0gc0g 17252  Grpcgrp 18678  Ringcrg 19882  LModclmod 20233  LSubSpclss 20303  LFnlclfn 37375  LKerclk 37403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-2 12146  df-sets 16967  df-slot 16985  df-ndx 16997  df-base 17015  df-plusg 17077  df-0g 17254  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-grp 18681  df-minusg 18682  df-sbg 18683  df-mgp 19820  df-ur 19837  df-ring 19884  df-lmod 20235  df-lss 20304  df-lfl 37376  df-lkr 37404
This theorem is referenced by:  lkrssv  37414  lkrlsp  37420  lkrlsp3  37422  lkrshp  37423  lclkrlem2f  39831  lclkrlem2n  39839  lclkrlem2v  39847  lcfrlem25  39886  lcfrlem35  39896
  Copyright terms: Public domain W3C validator