Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlss Structured version   Visualization version   GIF version

Theorem lkrlss 36233
Description: The kernel of a linear functional is a subspace. (nlelshi 29839 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrlss.f 𝐹 = (LFnl‘𝑊)
lkrlss.k 𝐾 = (LKer‘𝑊)
lkrlss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lkrlss ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)

Proof of Theorem lkrlss
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2823 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2823 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4 lkrlss.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrlss.k . . . 4 𝐾 = (LKer‘𝑊)
61, 2, 3, 4, 5lkrval2 36228 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))})
7 ssrab2 4058 . . 3 {𝑥 ∈ (Base‘𝑊) ∣ (𝐺𝑥) = (0g‘(Scalar‘𝑊))} ⊆ (Base‘𝑊)
86, 7eqsstrdi 4023 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ⊆ (Base‘𝑊))
9 eqid 2823 . . . . . 6 (0g𝑊) = (0g𝑊)
101, 9lmod0vcl 19665 . . . . 5 (𝑊 ∈ LMod → (0g𝑊) ∈ (Base‘𝑊))
1110adantr 483 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (Base‘𝑊))
122, 3, 9, 4lfl0 36203 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))
131, 2, 3, 4, 5ellkr 36227 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((0g𝑊) ∈ (𝐾𝐺) ↔ ((0g𝑊) ∈ (Base‘𝑊) ∧ (𝐺‘(0g𝑊)) = (0g‘(Scalar‘𝑊)))))
1411, 12, 13mpbir2and 711 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (0g𝑊) ∈ (𝐾𝐺))
1514ne0d 4303 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ≠ ∅)
16 simplll 773 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑊 ∈ LMod)
17 simplr 767 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
18 simpllr 774 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝐺𝐹)
19 simprl 769 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (𝐾𝐺))
201, 4, 5lkrcl 36230 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → 𝑥 ∈ (Base‘𝑊))
2116, 18, 19, 20syl3anc 1367 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑥 ∈ (Base‘𝑊))
22 eqid 2823 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
23 eqid 2823 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
241, 2, 22, 23lmodvscl 19653 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
2516, 17, 21, 24syl3anc 1367 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
26 simprr 771 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (𝐾𝐺))
271, 4, 5lkrcl 36230 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → 𝑦 ∈ (Base‘𝑊))
2816, 18, 26, 27syl3anc 1367 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → 𝑦 ∈ (Base‘𝑊))
29 eqid 2823 . . . . . . 7 (+g𝑊) = (+g𝑊)
301, 29lmodvacl 19650 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
3116, 25, 28, 30syl3anc 1367 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊))
32 eqid 2823 . . . . . . . 8 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
33 eqid 2823 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
341, 29, 2, 22, 23, 32, 33, 4lfli 36199 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
3516, 18, 17, 21, 28, 34syl113anc 1378 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
362, 3, 4, 5lkrf0 36231 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥 ∈ (𝐾𝐺)) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3716, 18, 19, 36syl3anc 1367 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑥) = (0g‘(Scalar‘𝑊)))
3837oveq2d 7174 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
392lmodring 19644 . . . . . . . . . 10 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
4016, 39syl 17 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Ring)
4123, 33, 3ringrz 19340 . . . . . . . . 9 (((Scalar‘𝑊) ∈ Ring ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4240, 17, 41syl2anc 586 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
4338, 42eqtrd 2858 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)) = (0g‘(Scalar‘𝑊)))
442, 3, 4, 5lkrf0 36231 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦 ∈ (𝐾𝐺)) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4516, 18, 26, 44syl3anc 1367 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺𝑦) = (0g‘(Scalar‘𝑊)))
4643, 45oveq12d 7176 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)) = ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))))
472lmodfgrp 19645 . . . . . . . 8 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
4816, 47syl 17 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (Scalar‘𝑊) ∈ Grp)
4923, 3grpidcl 18133 . . . . . . 7 ((Scalar‘𝑊) ∈ Grp → (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
5023, 32, 3grplid 18135 . . . . . . 7 (((Scalar‘𝑊) ∈ Grp ∧ (0g‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5148, 49, 50syl2anc2 587 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((0g‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5235, 46, 513eqtrd 2862 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))
531, 2, 3, 4, 5ellkr 36227 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5453ad2antrr 724 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺) ↔ (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (Base‘𝑊) ∧ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (0g‘(Scalar‘𝑊)))))
5531, 52, 54mpbir2and 711 . . . 4 ((((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑥 ∈ (𝐾𝐺) ∧ 𝑦 ∈ (𝐾𝐺))) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5655ralrimivva 3193 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
5756ralrimiva 3184 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺))
58 lkrlss.s . . 3 𝑆 = (LSubSp‘𝑊)
592, 23, 1, 29, 22, 58islss 19708 . 2 ((𝐾𝐺) ∈ 𝑆 ↔ ((𝐾𝐺) ⊆ (Base‘𝑊) ∧ (𝐾𝐺) ≠ ∅ ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (𝐾𝐺)∀𝑦 ∈ (𝐾𝐺)((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ (𝐾𝐺)))
608, 15, 57, 59syl3anbrc 1339 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  wss 3938  c0 4293  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  Grpcgrp 18105  Ringcrg 19299  LModclmod 19636  LSubSpclss 19705  LFnlclfn 36195  LKerclk 36223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lss 19706  df-lfl 36196  df-lkr 36224
This theorem is referenced by:  lkrssv  36234  lkrlsp  36240  lkrlsp3  36242  lkrshp  36243  lclkrlem2f  38650  lclkrlem2n  38658  lclkrlem2v  38666  lcfrlem25  38705  lcfrlem35  38715
  Copyright terms: Public domain W3C validator