![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmisfree | Structured version Visualization version GIF version |
Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21055 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
lmisfree.j | β’ π½ = (LBasisβπ) |
lmisfree.f | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmisfree | β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4340 | . . 3 β’ (π½ β β β βπ π β π½) | |
2 | vex 3467 | . . . . . . . 8 β’ π β V | |
3 | 2 | enref 9002 | . . . . . . 7 β’ π β π |
4 | lmisfree.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
5 | lmisfree.j | . . . . . . . 8 β’ π½ = (LBasisβπ) | |
6 | 4, 5 | lbslcic 21777 | . . . . . . 7 β’ ((π β LMod β§ π β π½ β§ π β π) β π βπ (πΉ freeLMod π)) |
7 | 3, 6 | mp3an3 1446 | . . . . . 6 β’ ((π β LMod β§ π β π½) β π βπ (πΉ freeLMod π)) |
8 | oveq2 7422 | . . . . . . . 8 β’ (π = π β (πΉ freeLMod π) = (πΉ freeLMod π)) | |
9 | 8 | breq2d 5153 | . . . . . . 7 β’ (π = π β (π βπ (πΉ freeLMod π) β π βπ (πΉ freeLMod π))) |
10 | 2, 9 | spcev 3585 | . . . . . 6 β’ (π βπ (πΉ freeLMod π) β βπ π βπ (πΉ freeLMod π)) |
11 | 7, 10 | syl 17 | . . . . 5 β’ ((π β LMod β§ π β π½) β βπ π βπ (πΉ freeLMod π)) |
12 | 11 | ex 411 | . . . 4 β’ (π β LMod β (π β π½ β βπ π βπ (πΉ freeLMod π))) |
13 | 12 | exlimdv 1928 | . . 3 β’ (π β LMod β (βπ π β π½ β βπ π βπ (πΉ freeLMod π))) |
14 | 1, 13 | biimtrid 241 | . 2 β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
15 | lmicsym 20959 | . . . 4 β’ (π βπ (πΉ freeLMod π) β (πΉ freeLMod π) βπ π) | |
16 | lmiclcl 20957 | . . . . 5 β’ (π βπ (πΉ freeLMod π) β π β LMod) | |
17 | 4 | lmodring 20753 | . . . . . . 7 β’ (π β LMod β πΉ β Ring) |
18 | vex 3467 | . . . . . . 7 β’ π β V | |
19 | eqid 2725 | . . . . . . . 8 β’ (πΉ freeLMod π) = (πΉ freeLMod π) | |
20 | eqid 2725 | . . . . . . . 8 β’ (πΉ unitVec π) = (πΉ unitVec π) | |
21 | eqid 2725 | . . . . . . . 8 β’ (LBasisβ(πΉ freeLMod π)) = (LBasisβ(πΉ freeLMod π)) | |
22 | 19, 20, 21 | frlmlbs 21733 | . . . . . . 7 β’ ((πΉ β Ring β§ π β V) β ran (πΉ unitVec π) β (LBasisβ(πΉ freeLMod π))) |
23 | 17, 18, 22 | sylancl 584 | . . . . . 6 β’ (π β LMod β ran (πΉ unitVec π) β (LBasisβ(πΉ freeLMod π))) |
24 | 23 | ne0d 4329 | . . . . 5 β’ (π β LMod β (LBasisβ(πΉ freeLMod π)) β β ) |
25 | 16, 24 | syl 17 | . . . 4 β’ (π βπ (πΉ freeLMod π) β (LBasisβ(πΉ freeLMod π)) β β ) |
26 | 21, 5 | lmiclbs 21773 | . . . 4 β’ ((πΉ freeLMod π) βπ π β ((LBasisβ(πΉ freeLMod π)) β β β π½ β β )) |
27 | 15, 25, 26 | sylc 65 | . . 3 β’ (π βπ (πΉ freeLMod π) β π½ β β ) |
28 | 27 | exlimiv 1925 | . 2 β’ (βπ π βπ (πΉ freeLMod π) β π½ β β ) |
29 | 14, 28 | impbid1 224 | 1 β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 βwex 1773 β wcel 2098 β wne 2930 Vcvv 3463 β c0 4316 class class class wbr 5141 ran crn 5671 βcfv 6541 (class class class)co 7414 β cen 8957 Scalarcsca 17233 Ringcrg 20175 LModclmod 20745 βπ clmic 20908 LBasisclbs 20961 freeLMod cfrlm 21682 unitVec cuvc 21718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-fzo 13658 df-seq 13997 df-hash 14320 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-hom 17254 df-cco 17255 df-0g 17420 df-gsum 17421 df-prds 17426 df-pws 17428 df-mre 17563 df-mrc 17564 df-acs 17566 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-mulg 19026 df-subg 19080 df-ghm 19170 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-nzr 20454 df-subrg 20510 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lmhm 20909 df-lmim 20910 df-lmic 20911 df-lbs 20962 df-sra 21060 df-rgmod 21061 df-dsmm 21668 df-frlm 21683 df-uvc 21719 df-lindf 21742 df-linds 21743 |
This theorem is referenced by: lvecisfrlm 21779 |
Copyright terms: Public domain | W3C validator |