Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmisfree Structured version   Visualization version   GIF version

Theorem lmisfree 20553
 Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 19951 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmisfree.j 𝐽 = (LBasis‘𝑊)
lmisfree.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lmisfree (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑊

Proof of Theorem lmisfree
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 n0 4263 . . 3 (𝐽 ≠ ∅ ↔ ∃𝑗 𝑗𝐽)
2 vex 3445 . . . . . . . 8 𝑗 ∈ V
32enref 8543 . . . . . . 7 𝑗𝑗
4 lmisfree.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
5 lmisfree.j . . . . . . . 8 𝐽 = (LBasis‘𝑊)
64, 5lbslcic 20552 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑗𝐽𝑗𝑗) → 𝑊𝑚 (𝐹 freeLMod 𝑗))
73, 6mp3an3 1447 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑗𝐽) → 𝑊𝑚 (𝐹 freeLMod 𝑗))
8 oveq2 7153 . . . . . . . 8 (𝑘 = 𝑗 → (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑗))
98breq2d 5046 . . . . . . 7 (𝑘 = 𝑗 → (𝑊𝑚 (𝐹 freeLMod 𝑘) ↔ 𝑊𝑚 (𝐹 freeLMod 𝑗)))
102, 9spcev 3556 . . . . . 6 (𝑊𝑚 (𝐹 freeLMod 𝑗) → ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘))
117, 10syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑗𝐽) → ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘))
1211ex 416 . . . 4 (𝑊 ∈ LMod → (𝑗𝐽 → ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘)))
1312exlimdv 1934 . . 3 (𝑊 ∈ LMod → (∃𝑗 𝑗𝐽 → ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘)))
141, 13syl5bi 245 . 2 (𝑊 ∈ LMod → (𝐽 ≠ ∅ → ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘)))
15 lmicsym 19858 . . . 4 (𝑊𝑚 (𝐹 freeLMod 𝑘) → (𝐹 freeLMod 𝑘) ≃𝑚 𝑊)
16 lmiclcl 19856 . . . . 5 (𝑊𝑚 (𝐹 freeLMod 𝑘) → 𝑊 ∈ LMod)
174lmodring 19656 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
18 vex 3445 . . . . . . 7 𝑘 ∈ V
19 eqid 2798 . . . . . . . 8 (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑘)
20 eqid 2798 . . . . . . . 8 (𝐹 unitVec 𝑘) = (𝐹 unitVec 𝑘)
21 eqid 2798 . . . . . . . 8 (LBasis‘(𝐹 freeLMod 𝑘)) = (LBasis‘(𝐹 freeLMod 𝑘))
2219, 20, 21frlmlbs 20508 . . . . . . 7 ((𝐹 ∈ Ring ∧ 𝑘 ∈ V) → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘)))
2317, 18, 22sylancl 589 . . . . . 6 (𝑊 ∈ LMod → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘)))
2423ne0d 4254 . . . . 5 (𝑊 ∈ LMod → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅)
2516, 24syl 17 . . . 4 (𝑊𝑚 (𝐹 freeLMod 𝑘) → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅)
2621, 5lmiclbs 20548 . . . 4 ((𝐹 freeLMod 𝑘) ≃𝑚 𝑊 → ((LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅ → 𝐽 ≠ ∅))
2715, 25, 26sylc 65 . . 3 (𝑊𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅)
2827exlimiv 1931 . 2 (∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅)
2914, 28impbid1 228 1 (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊𝑚 (𝐹 freeLMod 𝑘)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2987  Vcvv 3442  ∅c0 4246   class class class wbr 5034  ran crn 5524  ‘cfv 6332  (class class class)co 7145   ≈ cen 8507  Scalarcsca 16580  Ringcrg 19311  LModclmod 19648   ≃𝑚 clmic 19807  LBasisclbs 19860   freeLMod cfrlm 20457   unitVec cuvc 20493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-map 8409  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-fz 12906  df-fzo 13049  df-seq 13385  df-hash 13707  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-hom 16601  df-cco 16602  df-0g 16727  df-gsum 16728  df-prds 16733  df-pws 16735  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-mhm 17968  df-submnd 17969  df-grp 18118  df-minusg 18119  df-sbg 18120  df-mulg 18238  df-subg 18289  df-ghm 18369  df-cntz 18460  df-cmn 18921  df-abl 18922  df-mgp 19254  df-ur 19266  df-ring 19313  df-subrg 19547  df-lmod 19650  df-lss 19718  df-lsp 19758  df-lmhm 19808  df-lmim 19809  df-lmic 19810  df-lbs 19861  df-sra 19958  df-rgmod 19959  df-nzr 20045  df-dsmm 20443  df-frlm 20458  df-uvc 20494  df-lindf 20517  df-linds 20518 This theorem is referenced by:  lvecisfrlm  20554
 Copyright terms: Public domain W3C validator