|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lmisfree | Structured version Visualization version GIF version | ||
| Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21167 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| lmisfree.j | ⊢ 𝐽 = (LBasis‘𝑊) | 
| lmisfree.f | ⊢ 𝐹 = (Scalar‘𝑊) | 
| Ref | Expression | 
|---|---|
| lmisfree | ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | n0 4353 | . . 3 ⊢ (𝐽 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝐽) | |
| 2 | vex 3484 | . . . . . . . 8 ⊢ 𝑗 ∈ V | |
| 3 | 2 | enref 9025 | . . . . . . 7 ⊢ 𝑗 ≈ 𝑗 | 
| 4 | lmisfree.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmisfree.j | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 6 | 4, 5 | lbslcic 21861 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽 ∧ 𝑗 ≈ 𝑗) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) | 
| 7 | 3, 6 | mp3an3 1452 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) | 
| 8 | oveq2 7439 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑗)) | |
| 9 | 8 | breq2d 5155 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) ↔ 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗))) | 
| 10 | 2, 9 | spcev 3606 | . . . . . 6 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑗) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) | 
| 11 | 7, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) | 
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | 
| 13 | 12 | exlimdv 1933 | . . 3 ⊢ (𝑊 ∈ LMod → (∃𝑗 𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | 
| 14 | 1, 13 | biimtrid 242 | . 2 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | 
| 15 | lmicsym 21071 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (𝐹 freeLMod 𝑘) ≃𝑚 𝑊) | |
| 16 | lmiclcl 21069 | . . . . 5 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝑊 ∈ LMod) | |
| 17 | 4 | lmodring 20866 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) | 
| 18 | vex 3484 | . . . . . . 7 ⊢ 𝑘 ∈ V | |
| 19 | eqid 2737 | . . . . . . . 8 ⊢ (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑘) | |
| 20 | eqid 2737 | . . . . . . . 8 ⊢ (𝐹 unitVec 𝑘) = (𝐹 unitVec 𝑘) | |
| 21 | eqid 2737 | . . . . . . . 8 ⊢ (LBasis‘(𝐹 freeLMod 𝑘)) = (LBasis‘(𝐹 freeLMod 𝑘)) | |
| 22 | 19, 20, 21 | frlmlbs 21817 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ 𝑘 ∈ V) → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) | 
| 23 | 17, 18, 22 | sylancl 586 | . . . . . 6 ⊢ (𝑊 ∈ LMod → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) | 
| 24 | 23 | ne0d 4342 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) | 
| 25 | 16, 24 | syl 17 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) | 
| 26 | 21, 5 | lmiclbs 21857 | . . . 4 ⊢ ((𝐹 freeLMod 𝑘) ≃𝑚 𝑊 → ((LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅ → 𝐽 ≠ ∅)) | 
| 27 | 15, 25, 26 | sylc 65 | . . 3 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) | 
| 28 | 27 | exlimiv 1930 | . 2 ⊢ (∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) | 
| 29 | 14, 28 | impbid1 225 | 1 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 class class class wbr 5143 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ≈ cen 8982 Scalarcsca 17300 Ringcrg 20230 LModclmod 20858 ≃𝑚 clmic 21020 LBasisclbs 21073 freeLMod cfrlm 21766 unitVec cuvc 21802 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-nzr 20513 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lmim 21022 df-lmic 21023 df-lbs 21074 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-uvc 21803 df-lindf 21826 df-linds 21827 | 
| This theorem is referenced by: lvecisfrlm 21863 | 
| Copyright terms: Public domain | W3C validator |