![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmisfree | Structured version Visualization version GIF version |
Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21016 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
lmisfree.j | β’ π½ = (LBasisβπ) |
lmisfree.f | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmisfree | β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4341 | . . 3 β’ (π½ β β β βπ π β π½) | |
2 | vex 3472 | . . . . . . . 8 β’ π β V | |
3 | 2 | enref 8983 | . . . . . . 7 β’ π β π |
4 | lmisfree.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
5 | lmisfree.j | . . . . . . . 8 β’ π½ = (LBasisβπ) | |
6 | 4, 5 | lbslcic 21736 | . . . . . . 7 β’ ((π β LMod β§ π β π½ β§ π β π) β π βπ (πΉ freeLMod π)) |
7 | 3, 6 | mp3an3 1446 | . . . . . 6 β’ ((π β LMod β§ π β π½) β π βπ (πΉ freeLMod π)) |
8 | oveq2 7413 | . . . . . . . 8 β’ (π = π β (πΉ freeLMod π) = (πΉ freeLMod π)) | |
9 | 8 | breq2d 5153 | . . . . . . 7 β’ (π = π β (π βπ (πΉ freeLMod π) β π βπ (πΉ freeLMod π))) |
10 | 2, 9 | spcev 3590 | . . . . . 6 β’ (π βπ (πΉ freeLMod π) β βπ π βπ (πΉ freeLMod π)) |
11 | 7, 10 | syl 17 | . . . . 5 β’ ((π β LMod β§ π β π½) β βπ π βπ (πΉ freeLMod π)) |
12 | 11 | ex 412 | . . . 4 β’ (π β LMod β (π β π½ β βπ π βπ (πΉ freeLMod π))) |
13 | 12 | exlimdv 1928 | . . 3 β’ (π β LMod β (βπ π β π½ β βπ π βπ (πΉ freeLMod π))) |
14 | 1, 13 | biimtrid 241 | . 2 β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
15 | lmicsym 20920 | . . . 4 β’ (π βπ (πΉ freeLMod π) β (πΉ freeLMod π) βπ π) | |
16 | lmiclcl 20918 | . . . . 5 β’ (π βπ (πΉ freeLMod π) β π β LMod) | |
17 | 4 | lmodring 20714 | . . . . . . 7 β’ (π β LMod β πΉ β Ring) |
18 | vex 3472 | . . . . . . 7 β’ π β V | |
19 | eqid 2726 | . . . . . . . 8 β’ (πΉ freeLMod π) = (πΉ freeLMod π) | |
20 | eqid 2726 | . . . . . . . 8 β’ (πΉ unitVec π) = (πΉ unitVec π) | |
21 | eqid 2726 | . . . . . . . 8 β’ (LBasisβ(πΉ freeLMod π)) = (LBasisβ(πΉ freeLMod π)) | |
22 | 19, 20, 21 | frlmlbs 21692 | . . . . . . 7 β’ ((πΉ β Ring β§ π β V) β ran (πΉ unitVec π) β (LBasisβ(πΉ freeLMod π))) |
23 | 17, 18, 22 | sylancl 585 | . . . . . 6 β’ (π β LMod β ran (πΉ unitVec π) β (LBasisβ(πΉ freeLMod π))) |
24 | 23 | ne0d 4330 | . . . . 5 β’ (π β LMod β (LBasisβ(πΉ freeLMod π)) β β ) |
25 | 16, 24 | syl 17 | . . . 4 β’ (π βπ (πΉ freeLMod π) β (LBasisβ(πΉ freeLMod π)) β β ) |
26 | 21, 5 | lmiclbs 21732 | . . . 4 β’ ((πΉ freeLMod π) βπ π β ((LBasisβ(πΉ freeLMod π)) β β β π½ β β )) |
27 | 15, 25, 26 | sylc 65 | . . 3 β’ (π βπ (πΉ freeLMod π) β π½ β β ) |
28 | 27 | exlimiv 1925 | . 2 β’ (βπ π βπ (πΉ freeLMod π) β π½ β β ) |
29 | 14, 28 | impbid1 224 | 1 β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 βwex 1773 β wcel 2098 β wne 2934 Vcvv 3468 β c0 4317 class class class wbr 5141 ran crn 5670 βcfv 6537 (class class class)co 7405 β cen 8938 Scalarcsca 17209 Ringcrg 20138 LModclmod 20706 βπ clmic 20869 LBasisclbs 20922 freeLMod cfrlm 21641 unitVec cuvc 21677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14296 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-hom 17230 df-cco 17231 df-0g 17396 df-gsum 17397 df-prds 17402 df-pws 17404 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-mulg 18996 df-subg 19050 df-ghm 19139 df-cntz 19233 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-nzr 20415 df-subrg 20471 df-lmod 20708 df-lss 20779 df-lsp 20819 df-lmhm 20870 df-lmim 20871 df-lmic 20872 df-lbs 20923 df-sra 21021 df-rgmod 21022 df-dsmm 21627 df-frlm 21642 df-uvc 21678 df-lindf 21701 df-linds 21702 |
This theorem is referenced by: lvecisfrlm 21738 |
Copyright terms: Public domain | W3C validator |