| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmisfree | Structured version Visualization version GIF version | ||
| Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21082 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmisfree.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lmisfree.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmisfree | ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4319 | . . 3 ⊢ (𝐽 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝐽) | |
| 2 | vex 3454 | . . . . . . . 8 ⊢ 𝑗 ∈ V | |
| 3 | 2 | enref 8959 | . . . . . . 7 ⊢ 𝑗 ≈ 𝑗 |
| 4 | lmisfree.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmisfree.j | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 6 | 4, 5 | lbslcic 21757 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽 ∧ 𝑗 ≈ 𝑗) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) |
| 7 | 3, 6 | mp3an3 1452 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) |
| 8 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑗)) | |
| 9 | 8 | breq2d 5122 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) ↔ 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗))) |
| 10 | 2, 9 | spcev 3575 | . . . . . 6 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑗) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) |
| 11 | 7, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| 13 | 12 | exlimdv 1933 | . . 3 ⊢ (𝑊 ∈ LMod → (∃𝑗 𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| 14 | 1, 13 | biimtrid 242 | . 2 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| 15 | lmicsym 20986 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (𝐹 freeLMod 𝑘) ≃𝑚 𝑊) | |
| 16 | lmiclcl 20984 | . . . . 5 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝑊 ∈ LMod) | |
| 17 | 4 | lmodring 20781 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 18 | vex 3454 | . . . . . . 7 ⊢ 𝑘 ∈ V | |
| 19 | eqid 2730 | . . . . . . . 8 ⊢ (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑘) | |
| 20 | eqid 2730 | . . . . . . . 8 ⊢ (𝐹 unitVec 𝑘) = (𝐹 unitVec 𝑘) | |
| 21 | eqid 2730 | . . . . . . . 8 ⊢ (LBasis‘(𝐹 freeLMod 𝑘)) = (LBasis‘(𝐹 freeLMod 𝑘)) | |
| 22 | 19, 20, 21 | frlmlbs 21713 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ 𝑘 ∈ V) → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) |
| 23 | 17, 18, 22 | sylancl 586 | . . . . . 6 ⊢ (𝑊 ∈ LMod → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) |
| 24 | 23 | ne0d 4308 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) |
| 25 | 16, 24 | syl 17 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) |
| 26 | 21, 5 | lmiclbs 21753 | . . . 4 ⊢ ((𝐹 freeLMod 𝑘) ≃𝑚 𝑊 → ((LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅ → 𝐽 ≠ ∅)) |
| 27 | 15, 25, 26 | sylc 65 | . . 3 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) |
| 28 | 27 | exlimiv 1930 | . 2 ⊢ (∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) |
| 29 | 14, 28 | impbid1 225 | 1 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 class class class wbr 5110 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ≈ cen 8918 Scalarcsca 17230 Ringcrg 20149 LModclmod 20773 ≃𝑚 clmic 20935 LBasisclbs 20988 freeLMod cfrlm 21662 unitVec cuvc 21698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-nzr 20429 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lmim 20937 df-lmic 20938 df-lbs 20989 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-uvc 21699 df-lindf 21722 df-linds 21723 |
| This theorem is referenced by: lvecisfrlm 21759 |
| Copyright terms: Public domain | W3C validator |