Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmisfree | Structured version Visualization version GIF version |
Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 20202 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
lmisfree.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lmisfree.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmisfree | ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4261 | . . 3 ⊢ (𝐽 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝐽) | |
2 | vex 3412 | . . . . . . . 8 ⊢ 𝑗 ∈ V | |
3 | 2 | enref 8661 | . . . . . . 7 ⊢ 𝑗 ≈ 𝑗 |
4 | lmisfree.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmisfree.j | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝑊) | |
6 | 4, 5 | lbslcic 20803 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽 ∧ 𝑗 ≈ 𝑗) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) |
7 | 3, 6 | mp3an3 1452 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) |
8 | oveq2 7221 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑗)) | |
9 | 8 | breq2d 5065 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) ↔ 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗))) |
10 | 2, 9 | spcev 3521 | . . . . . 6 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑗) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) |
11 | 7, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) |
12 | 11 | ex 416 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
13 | 12 | exlimdv 1941 | . . 3 ⊢ (𝑊 ∈ LMod → (∃𝑗 𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
14 | 1, 13 | syl5bi 245 | . 2 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
15 | lmicsym 20109 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (𝐹 freeLMod 𝑘) ≃𝑚 𝑊) | |
16 | lmiclcl 20107 | . . . . 5 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝑊 ∈ LMod) | |
17 | 4 | lmodring 19907 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
18 | vex 3412 | . . . . . . 7 ⊢ 𝑘 ∈ V | |
19 | eqid 2737 | . . . . . . . 8 ⊢ (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑘) | |
20 | eqid 2737 | . . . . . . . 8 ⊢ (𝐹 unitVec 𝑘) = (𝐹 unitVec 𝑘) | |
21 | eqid 2737 | . . . . . . . 8 ⊢ (LBasis‘(𝐹 freeLMod 𝑘)) = (LBasis‘(𝐹 freeLMod 𝑘)) | |
22 | 19, 20, 21 | frlmlbs 20759 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ 𝑘 ∈ V) → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) |
23 | 17, 18, 22 | sylancl 589 | . . . . . 6 ⊢ (𝑊 ∈ LMod → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) |
24 | 23 | ne0d 4250 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) |
25 | 16, 24 | syl 17 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) |
26 | 21, 5 | lmiclbs 20799 | . . . 4 ⊢ ((𝐹 freeLMod 𝑘) ≃𝑚 𝑊 → ((LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅ → 𝐽 ≠ ∅)) |
27 | 15, 25, 26 | sylc 65 | . . 3 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) |
28 | 27 | exlimiv 1938 | . 2 ⊢ (∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) |
29 | 14, 28 | impbid1 228 | 1 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ≠ wne 2940 Vcvv 3408 ∅c0 4237 class class class wbr 5053 ran crn 5552 ‘cfv 6380 (class class class)co 7213 ≈ cen 8623 Scalarcsca 16805 Ringcrg 19562 LModclmod 19899 ≃𝑚 clmic 20058 LBasisclbs 20111 freeLMod cfrlm 20708 unitVec cuvc 20744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-hom 16826 df-cco 16827 df-0g 16946 df-gsum 16947 df-prds 16952 df-pws 16954 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-subg 18540 df-ghm 18620 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-subrg 19798 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lmhm 20059 df-lmim 20060 df-lmic 20061 df-lbs 20112 df-sra 20209 df-rgmod 20210 df-nzr 20296 df-dsmm 20694 df-frlm 20709 df-uvc 20745 df-lindf 20768 df-linds 20769 |
This theorem is referenced by: lvecisfrlm 20805 |
Copyright terms: Public domain | W3C validator |