Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmisfree | Structured version Visualization version GIF version |
Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 20342 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
lmisfree.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lmisfree.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmisfree | ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4277 | . . 3 ⊢ (𝐽 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝐽) | |
2 | vex 3426 | . . . . . . . 8 ⊢ 𝑗 ∈ V | |
3 | 2 | enref 8728 | . . . . . . 7 ⊢ 𝑗 ≈ 𝑗 |
4 | lmisfree.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | lmisfree.j | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝑊) | |
6 | 4, 5 | lbslcic 20958 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽 ∧ 𝑗 ≈ 𝑗) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) |
7 | 3, 6 | mp3an3 1448 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) |
8 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑗)) | |
9 | 8 | breq2d 5082 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) ↔ 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗))) |
10 | 2, 9 | spcev 3535 | . . . . . 6 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑗) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) |
11 | 7, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
13 | 12 | exlimdv 1937 | . . 3 ⊢ (𝑊 ∈ LMod → (∃𝑗 𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
14 | 1, 13 | syl5bi 241 | . 2 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
15 | lmicsym 20249 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (𝐹 freeLMod 𝑘) ≃𝑚 𝑊) | |
16 | lmiclcl 20247 | . . . . 5 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝑊 ∈ LMod) | |
17 | 4 | lmodring 20046 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
18 | vex 3426 | . . . . . . 7 ⊢ 𝑘 ∈ V | |
19 | eqid 2738 | . . . . . . . 8 ⊢ (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑘) | |
20 | eqid 2738 | . . . . . . . 8 ⊢ (𝐹 unitVec 𝑘) = (𝐹 unitVec 𝑘) | |
21 | eqid 2738 | . . . . . . . 8 ⊢ (LBasis‘(𝐹 freeLMod 𝑘)) = (LBasis‘(𝐹 freeLMod 𝑘)) | |
22 | 19, 20, 21 | frlmlbs 20914 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ 𝑘 ∈ V) → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) |
23 | 17, 18, 22 | sylancl 585 | . . . . . 6 ⊢ (𝑊 ∈ LMod → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) |
24 | 23 | ne0d 4266 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) |
25 | 16, 24 | syl 17 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) |
26 | 21, 5 | lmiclbs 20954 | . . . 4 ⊢ ((𝐹 freeLMod 𝑘) ≃𝑚 𝑊 → ((LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅ → 𝐽 ≠ ∅)) |
27 | 15, 25, 26 | sylc 65 | . . 3 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) |
28 | 27 | exlimiv 1934 | . 2 ⊢ (∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) |
29 | 14, 28 | impbid1 224 | 1 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ≈ cen 8688 Scalarcsca 16891 Ringcrg 19698 LModclmod 20038 ≃𝑚 clmic 20198 LBasisclbs 20251 freeLMod cfrlm 20863 unitVec cuvc 20899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lmhm 20199 df-lmim 20200 df-lmic 20201 df-lbs 20252 df-sra 20349 df-rgmod 20350 df-nzr 20442 df-dsmm 20849 df-frlm 20864 df-uvc 20900 df-lindf 20923 df-linds 20924 |
This theorem is referenced by: lvecisfrlm 20960 |
Copyright terms: Public domain | W3C validator |