![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmisfree | Structured version Visualization version GIF version |
Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 20642 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
lmisfree.j | β’ π½ = (LBasisβπ) |
lmisfree.f | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmisfree | β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4307 | . . 3 β’ (π½ β β β βπ π β π½) | |
2 | vex 3448 | . . . . . . . 8 β’ π β V | |
3 | 2 | enref 8928 | . . . . . . 7 β’ π β π |
4 | lmisfree.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
5 | lmisfree.j | . . . . . . . 8 β’ π½ = (LBasisβπ) | |
6 | 4, 5 | lbslcic 21263 | . . . . . . 7 β’ ((π β LMod β§ π β π½ β§ π β π) β π βπ (πΉ freeLMod π)) |
7 | 3, 6 | mp3an3 1451 | . . . . . 6 β’ ((π β LMod β§ π β π½) β π βπ (πΉ freeLMod π)) |
8 | oveq2 7366 | . . . . . . . 8 β’ (π = π β (πΉ freeLMod π) = (πΉ freeLMod π)) | |
9 | 8 | breq2d 5118 | . . . . . . 7 β’ (π = π β (π βπ (πΉ freeLMod π) β π βπ (πΉ freeLMod π))) |
10 | 2, 9 | spcev 3564 | . . . . . 6 β’ (π βπ (πΉ freeLMod π) β βπ π βπ (πΉ freeLMod π)) |
11 | 7, 10 | syl 17 | . . . . 5 β’ ((π β LMod β§ π β π½) β βπ π βπ (πΉ freeLMod π)) |
12 | 11 | ex 414 | . . . 4 β’ (π β LMod β (π β π½ β βπ π βπ (πΉ freeLMod π))) |
13 | 12 | exlimdv 1937 | . . 3 β’ (π β LMod β (βπ π β π½ β βπ π βπ (πΉ freeLMod π))) |
14 | 1, 13 | biimtrid 241 | . 2 β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
15 | lmicsym 20548 | . . . 4 β’ (π βπ (πΉ freeLMod π) β (πΉ freeLMod π) βπ π) | |
16 | lmiclcl 20546 | . . . . 5 β’ (π βπ (πΉ freeLMod π) β π β LMod) | |
17 | 4 | lmodring 20344 | . . . . . . 7 β’ (π β LMod β πΉ β Ring) |
18 | vex 3448 | . . . . . . 7 β’ π β V | |
19 | eqid 2733 | . . . . . . . 8 β’ (πΉ freeLMod π) = (πΉ freeLMod π) | |
20 | eqid 2733 | . . . . . . . 8 β’ (πΉ unitVec π) = (πΉ unitVec π) | |
21 | eqid 2733 | . . . . . . . 8 β’ (LBasisβ(πΉ freeLMod π)) = (LBasisβ(πΉ freeLMod π)) | |
22 | 19, 20, 21 | frlmlbs 21219 | . . . . . . 7 β’ ((πΉ β Ring β§ π β V) β ran (πΉ unitVec π) β (LBasisβ(πΉ freeLMod π))) |
23 | 17, 18, 22 | sylancl 587 | . . . . . 6 β’ (π β LMod β ran (πΉ unitVec π) β (LBasisβ(πΉ freeLMod π))) |
24 | 23 | ne0d 4296 | . . . . 5 β’ (π β LMod β (LBasisβ(πΉ freeLMod π)) β β ) |
25 | 16, 24 | syl 17 | . . . 4 β’ (π βπ (πΉ freeLMod π) β (LBasisβ(πΉ freeLMod π)) β β ) |
26 | 21, 5 | lmiclbs 21259 | . . . 4 β’ ((πΉ freeLMod π) βπ π β ((LBasisβ(πΉ freeLMod π)) β β β π½ β β )) |
27 | 15, 25, 26 | sylc 65 | . . 3 β’ (π βπ (πΉ freeLMod π) β π½ β β ) |
28 | 27 | exlimiv 1934 | . 2 β’ (βπ π βπ (πΉ freeLMod π) β π½ β β ) |
29 | 14, 28 | impbid1 224 | 1 β’ (π β LMod β (π½ β β β βπ π βπ (πΉ freeLMod π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 βwex 1782 β wcel 2107 β wne 2940 Vcvv 3444 β c0 4283 class class class wbr 5106 ran crn 5635 βcfv 6497 (class class class)co 7358 β cen 8883 Scalarcsca 17141 Ringcrg 19969 LModclmod 20336 βπ clmic 20497 LBasisclbs 20550 freeLMod cfrlm 21168 unitVec cuvc 21204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-sup 9383 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-fzo 13574 df-seq 13913 df-hash 14237 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-sca 17154 df-vsca 17155 df-ip 17156 df-tset 17157 df-ple 17158 df-ds 17160 df-hom 17162 df-cco 17163 df-0g 17328 df-gsum 17329 df-prds 17334 df-pws 17336 df-mre 17471 df-mrc 17472 df-acs 17474 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-mhm 18606 df-submnd 18607 df-grp 18756 df-minusg 18757 df-sbg 18758 df-mulg 18878 df-subg 18930 df-ghm 19011 df-cntz 19102 df-cmn 19569 df-abl 19570 df-mgp 19902 df-ur 19919 df-ring 19971 df-subrg 20234 df-lmod 20338 df-lss 20408 df-lsp 20448 df-lmhm 20498 df-lmim 20499 df-lmic 20500 df-lbs 20551 df-sra 20649 df-rgmod 20650 df-nzr 20744 df-dsmm 21154 df-frlm 21169 df-uvc 21205 df-lindf 21228 df-linds 21229 |
This theorem is referenced by: lvecisfrlm 21265 |
Copyright terms: Public domain | W3C validator |