| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmisfree | Structured version Visualization version GIF version | ||
| Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21090 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmisfree.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lmisfree.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmisfree | ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4306 | . . 3 ⊢ (𝐽 ≠ ∅ ↔ ∃𝑗 𝑗 ∈ 𝐽) | |
| 2 | vex 3442 | . . . . . . . 8 ⊢ 𝑗 ∈ V | |
| 3 | 2 | enref 8917 | . . . . . . 7 ⊢ 𝑗 ≈ 𝑗 |
| 4 | lmisfree.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | lmisfree.j | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 6 | 4, 5 | lbslcic 21766 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽 ∧ 𝑗 ≈ 𝑗) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) |
| 7 | 3, 6 | mp3an3 1452 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗)) |
| 8 | oveq2 7361 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑗)) | |
| 9 | 8 | breq2d 5107 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) ↔ 𝑊 ≃𝑚 (𝐹 freeLMod 𝑗))) |
| 10 | 2, 9 | spcev 3563 | . . . . . 6 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑗) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) |
| 11 | 7, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑗 ∈ 𝐽) → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| 13 | 12 | exlimdv 1933 | . . 3 ⊢ (𝑊 ∈ LMod → (∃𝑗 𝑗 ∈ 𝐽 → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| 14 | 1, 13 | biimtrid 242 | . 2 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| 15 | lmicsym 20994 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (𝐹 freeLMod 𝑘) ≃𝑚 𝑊) | |
| 16 | lmiclcl 20992 | . . . . 5 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝑊 ∈ LMod) | |
| 17 | 4 | lmodring 20789 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 18 | vex 3442 | . . . . . . 7 ⊢ 𝑘 ∈ V | |
| 19 | eqid 2729 | . . . . . . . 8 ⊢ (𝐹 freeLMod 𝑘) = (𝐹 freeLMod 𝑘) | |
| 20 | eqid 2729 | . . . . . . . 8 ⊢ (𝐹 unitVec 𝑘) = (𝐹 unitVec 𝑘) | |
| 21 | eqid 2729 | . . . . . . . 8 ⊢ (LBasis‘(𝐹 freeLMod 𝑘)) = (LBasis‘(𝐹 freeLMod 𝑘)) | |
| 22 | 19, 20, 21 | frlmlbs 21722 | . . . . . . 7 ⊢ ((𝐹 ∈ Ring ∧ 𝑘 ∈ V) → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) |
| 23 | 17, 18, 22 | sylancl 586 | . . . . . 6 ⊢ (𝑊 ∈ LMod → ran (𝐹 unitVec 𝑘) ∈ (LBasis‘(𝐹 freeLMod 𝑘))) |
| 24 | 23 | ne0d 4295 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) |
| 25 | 16, 24 | syl 17 | . . . 4 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → (LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅) |
| 26 | 21, 5 | lmiclbs 21762 | . . . 4 ⊢ ((𝐹 freeLMod 𝑘) ≃𝑚 𝑊 → ((LBasis‘(𝐹 freeLMod 𝑘)) ≠ ∅ → 𝐽 ≠ ∅)) |
| 27 | 15, 25, 26 | sylc 65 | . . 3 ⊢ (𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) |
| 28 | 27 | exlimiv 1930 | . 2 ⊢ (∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘) → 𝐽 ≠ ∅) |
| 29 | 14, 28 | impbid1 225 | 1 ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∅c0 4286 class class class wbr 5095 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ≈ cen 8876 Scalarcsca 17182 Ringcrg 20136 LModclmod 20781 ≃𝑚 clmic 20943 LBasisclbs 20996 freeLMod cfrlm 21671 unitVec cuvc 21707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-nzr 20416 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lmhm 20944 df-lmim 20945 df-lmic 20946 df-lbs 20997 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-uvc 21708 df-lindf 21731 df-linds 21732 |
| This theorem is referenced by: lvecisfrlm 21768 |
| Copyright terms: Public domain | W3C validator |