![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvpncan | Structured version Visualization version GIF version |
Description: Addition/subtraction cancellation law for vectors. (hvpncan 30761 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod4.v | ⊢ 𝑉 = (Base‘𝑊) |
lmod4.p | ⊢ + = (+g‘𝑊) |
lmodvaddsub4.m | ⊢ − = (-g‘𝑊) |
Ref | Expression |
---|---|
lmodvpncan | ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20703 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmod4.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmod4.p | . . 3 ⊢ + = (+g‘𝑊) | |
4 | lmodvaddsub4.m | . . 3 ⊢ − = (-g‘𝑊) | |
5 | 2, 3, 4 | grppncan 18949 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
6 | 1, 5 | syl3an1 1160 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 Basecbs 17143 +gcplusg 17196 Grpcgrp 18853 -gcsg 18855 LModclmod 20696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-sbg 18858 df-lmod 20698 |
This theorem is referenced by: lspsolv 20984 |
Copyright terms: Public domain | W3C validator |