MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvpncan Structured version   Visualization version   GIF version

Theorem lmodvpncan 19952
Description: Addition/subtraction cancellation law for vectors. (hvpncan 29120 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod4.v 𝑉 = (Base‘𝑊)
lmod4.p + = (+g𝑊)
lmodvaddsub4.m = (-g𝑊)
Assertion
Ref Expression
lmodvpncan ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 + 𝐵) 𝐵) = 𝐴)

Proof of Theorem lmodvpncan
StepHypRef Expression
1 lmodgrp 19906 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmod4.v . . 3 𝑉 = (Base‘𝑊)
3 lmod4.p . . 3 + = (+g𝑊)
4 lmodvaddsub4.m . . 3 = (-g𝑊)
52, 3, 4grppncan 18454 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 + 𝐵) 𝐵) = 𝐴)
61, 5syl3an1 1165 1 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 + 𝐵) 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  Grpcgrp 18365  -gcsg 18367  LModclmod 19899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-lmod 19901
This theorem is referenced by:  lspsolv  20180
  Copyright terms: Public domain W3C validator