Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvpncan | Structured version Visualization version GIF version |
Description: Addition/subtraction cancellation law for vectors. (hvpncan 29401 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmod4.v | ⊢ 𝑉 = (Base‘𝑊) |
lmod4.p | ⊢ + = (+g‘𝑊) |
lmodvaddsub4.m | ⊢ − = (-g‘𝑊) |
Ref | Expression |
---|---|
lmodvpncan | ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20130 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmod4.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmod4.p | . . 3 ⊢ + = (+g‘𝑊) | |
4 | lmodvaddsub4.m | . . 3 ⊢ − = (-g‘𝑊) | |
5 | 2, 3, 4 | grppncan 18666 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
6 | 1, 5 | syl3an1 1162 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Grpcgrp 18577 -gcsg 18579 LModclmod 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-lmod 20125 |
This theorem is referenced by: lspsolv 20405 |
Copyright terms: Public domain | W3C validator |