| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grppncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction (pncan 11363 analog). (Contributed by NM, 16-Apr-2014.) |
| Ref | Expression |
|---|---|
| grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubadd.p | ⊢ + = (+g‘𝐺) |
| grpsubadd.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grppncan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 3 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 4 | grpsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 7 | 4, 5, 6 | grpaddsubass 18940 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 + (𝑌 − 𝑌))) |
| 8 | 1, 2, 3, 3, 7 | syl13anc 1374 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 + (𝑌 − 𝑌))) |
| 9 | eqid 2731 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 10 | 4, 9, 6 | grpsubid 18934 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑌 − 𝑌) = (0g‘𝐺)) |
| 11 | 10 | oveq2d 7362 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑌 − 𝑌)) = (𝑋 + (0g‘𝐺))) |
| 12 | 11 | 3adant2 1131 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑌 − 𝑌)) = (𝑋 + (0g‘𝐺))) |
| 13 | 4, 5, 9 | grprid 18878 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (0g‘𝐺)) = 𝑋) |
| 14 | 13 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (0g‘𝐺)) = 𝑋) |
| 15 | 8, 12, 14 | 3eqtrd 2770 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Grpcgrp 18843 -gcsg 18845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 |
| This theorem is referenced by: grpnpcan 18942 grppnpcan2 18944 ssnmz 19076 conjnmz 19162 cntrsubgnsg 19253 sylow2blem3 19532 sylow3lem2 19538 subgdisj1 19601 pgpfac1lem3 19989 lmodvpncan 20846 opnsubg 24021 lfl0 39103 nelsubgcld 42529 |
| Copyright terms: Public domain | W3C validator |