| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grppncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction (pncan 11434 analog). (Contributed by NM, 16-Apr-2014.) |
| Ref | Expression |
|---|---|
| grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubadd.p | ⊢ + = (+g‘𝐺) |
| grpsubadd.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grppncan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 3 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 4 | grpsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 7 | 4, 5, 6 | grpaddsubass 18969 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 + (𝑌 − 𝑌))) |
| 8 | 1, 2, 3, 3, 7 | syl13anc 1374 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑌) = (𝑋 + (𝑌 − 𝑌))) |
| 9 | eqid 2730 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 10 | 4, 9, 6 | grpsubid 18963 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑌 − 𝑌) = (0g‘𝐺)) |
| 11 | 10 | oveq2d 7406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑌 − 𝑌)) = (𝑋 + (0g‘𝐺))) |
| 12 | 11 | 3adant2 1131 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑌 − 𝑌)) = (𝑋 + (0g‘𝐺))) |
| 13 | 4, 5, 9 | grprid 18907 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (0g‘𝐺)) = 𝑋) |
| 14 | 13 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (0g‘𝐺)) = 𝑋) |
| 15 | 8, 12, 14 | 3eqtrd 2769 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Grpcgrp 18872 -gcsg 18874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 |
| This theorem is referenced by: grpnpcan 18971 grppnpcan2 18973 ssnmz 19105 conjnmz 19191 cntrsubgnsg 19282 sylow2blem3 19559 sylow3lem2 19565 subgdisj1 19628 pgpfac1lem3 20016 lmodvpncan 20828 opnsubg 24002 lfl0 39065 nelsubgcld 42492 |
| Copyright terms: Public domain | W3C validator |