MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolv Structured version   Visualization version   GIF version

Theorem lspsolv 19914
Description: If 𝑋 is in the span of 𝐴 ∪ {𝑌} but not 𝐴, then 𝑌 is in the span of 𝐴 ∪ {𝑋}. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v 𝑉 = (Base‘𝑊)
lspsolv.s 𝑆 = (LSubSp‘𝑊)
lspsolv.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsolv ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))

Proof of Theorem lspsolv
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.v . . 3 𝑉 = (Base‘𝑊)
2 lspsolv.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspsolv.n . . 3 𝑁 = (LSpan‘𝑊)
4 eqid 2821 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2821 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2821 . . 3 (+g𝑊) = (+g𝑊)
7 eqid 2821 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2821 . . 3 {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)} = {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)}
9 lveclmod 19877 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
109adantr 483 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑊 ∈ LMod)
11 simpr1 1190 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝐴𝑉)
12 simpr2 1191 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌𝑉)
13 simpr3 1192 . . . 4 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
1413eldifad 3947 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
151, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14lspsolvlem 19913 . 2 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
164lvecdrng 19876 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
1716ad2antrr 724 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (Scalar‘𝑊) ∈ DivRing)
18 simprl 769 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
1910adantr 483 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑊 ∈ LMod)
2012adantr 483 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌𝑉)
21 eqid 2821 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
22 eqid 2821 . . . . . . . . . . . . 13 (0g𝑊) = (0g𝑊)
231, 4, 7, 21, 22lmod0vs 19666 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2419, 20, 23syl2anc 586 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2524oveq2d 7171 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)(0g𝑊)))
2611adantr 483 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴𝑉)
2720snssd 4741 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑌} ⊆ 𝑉)
2826, 27unssd 4161 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑌}) ⊆ 𝑉)
291, 3lspssv 19754 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3019, 28, 29syl2anc 586 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3130ssdifssd 4118 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)) ⊆ 𝑉)
3213adantr 483 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3331, 32sseldd 3967 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋𝑉)
341, 6, 22lmod0vrid 19664 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3519, 33, 34syl2anc 586 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3625, 35eqtrd 2856 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = 𝑋)
3736, 32eqeltrd 2913 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3837eldifbd 3948 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
39 simprr 771 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
40 oveq1 7162 . . . . . . . . . . 11 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑟( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
4140oveq2d 7171 . . . . . . . . . 10 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
4241eleq1d 2897 . . . . . . . . 9 (𝑟 = (0g‘(Scalar‘𝑊)) → ((𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) ↔ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4339, 42syl5ibcom 247 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4443necon3bd 3030 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) → 𝑟 ≠ (0g‘(Scalar‘𝑊))))
4538, 44mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ≠ (0g‘(Scalar‘𝑊)))
46 eqid 2821 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
47 eqid 2821 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
48 eqid 2821 . . . . . . 7 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
495, 21, 46, 47, 48drnginvrl 19520 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5017, 18, 45, 49syl3anc 1367 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5150oveq1d 7170 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
525, 21, 48drnginvrcl 19518 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
5317, 18, 45, 52syl3anc 1367 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
541, 4, 7, 5, 46lmodvsass 19658 . . . . 5 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
5519, 53, 18, 20, 54syl13anc 1368 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
561, 4, 7, 47lmodvs1 19661 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5719, 20, 56syl2anc 586 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5851, 55, 573eqtr3d 2864 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) = 𝑌)
5933snssd 4741 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑋} ⊆ 𝑉)
6026, 59unssd 4161 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ 𝑉)
611, 2, 3lspcl 19747 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
6219, 60, 61syl2anc 586 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
631, 4, 7, 5lmodvscl 19650 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
6419, 18, 20, 63syl3anc 1367 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
65 eqid 2821 . . . . . . 7 (-g𝑊) = (-g𝑊)
661, 6, 65lmodvpncan 19686 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
6719, 64, 33, 66syl3anc 1367 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
681, 6lmodcom 19679 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
6919, 64, 33, 68syl3anc 1367 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
70 ssun1 4147 . . . . . . . . . 10 𝐴 ⊆ (𝐴 ∪ {𝑋})
7170a1i 11 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴 ⊆ (𝐴 ∪ {𝑋}))
721, 3lspss 19755 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉𝐴 ⊆ (𝐴 ∪ {𝑋})) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7319, 60, 71, 72syl3anc 1367 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7473, 39sseldd 3967 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
7569, 74eqeltrd 2913 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
761, 3lspssid 19756 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7719, 60, 76syl2anc 586 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
78 snidg 4598 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
79 elun2 4152 . . . . . . . 8 (𝑋 ∈ {𝑋} → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8033, 78, 793syl 18 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8177, 80sseldd 3967 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8265, 2lssvsubcl 19714 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})) ∧ 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8319, 62, 75, 81, 82syl22anc 836 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8467, 83eqeltrrd 2914 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
854, 7, 5, 2lssvscl 19726 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8619, 62, 53, 84, 85syl22anc 836 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8758, 86eqeltrrd 2914 . 2 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8815, 87rexlimddv 3291 1 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139  {crab 3142  cdif 3932  cun 3933  wss 3935  {csn 4566  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  Scalarcsca 16567   ·𝑠 cvsca 16568  0gc0g 16712  -gcsg 18104  1rcur 19250  invrcinvr 19420  DivRingcdr 19501  LModclmod 19633  LSubSpclss 19702  LSpanclspn 19742  LVecclvec 19873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-drng 19503  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lvec 19874
This theorem is referenced by:  lssacsex  19915  lspsnat  19916  lsppratlem1  19918  lsppratlem3  19920  lsppratlem4  19921  lbsextlem4  19932  lindsadd  34884  lindsenlbs  34886
  Copyright terms: Public domain W3C validator