MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolv Structured version   Visualization version   GIF version

Theorem lspsolv 21036
Description: If 𝑋 is in the span of 𝐴 ∪ {𝑌} but not 𝐴, then 𝑌 is in the span of 𝐴 ∪ {𝑋}. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v 𝑉 = (Base‘𝑊)
lspsolv.s 𝑆 = (LSubSp‘𝑊)
lspsolv.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsolv ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))

Proof of Theorem lspsolv
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.v . . 3 𝑉 = (Base‘𝑊)
2 lspsolv.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspsolv.n . . 3 𝑁 = (LSpan‘𝑊)
4 eqid 2727 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2727 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2727 . . 3 (+g𝑊) = (+g𝑊)
7 eqid 2727 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2727 . . 3 {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)} = {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)}
9 lveclmod 20996 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
109adantr 479 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑊 ∈ LMod)
11 simpr1 1191 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝐴𝑉)
12 simpr2 1192 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌𝑉)
13 simpr3 1193 . . . 4 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
1413eldifad 3959 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
151, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14lspsolvlem 21035 . 2 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
164lvecdrng 20995 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
1716ad2antrr 724 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (Scalar‘𝑊) ∈ DivRing)
18 simprl 769 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
1910adantr 479 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑊 ∈ LMod)
2012adantr 479 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌𝑉)
21 eqid 2727 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
22 eqid 2727 . . . . . . . . . . . . 13 (0g𝑊) = (0g𝑊)
231, 4, 7, 21, 22lmod0vs 20783 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2419, 20, 23syl2anc 582 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2524oveq2d 7440 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)(0g𝑊)))
2611adantr 479 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴𝑉)
2720snssd 4815 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑌} ⊆ 𝑉)
2826, 27unssd 4186 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑌}) ⊆ 𝑉)
291, 3lspssv 20872 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3019, 28, 29syl2anc 582 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3130ssdifssd 4141 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)) ⊆ 𝑉)
3213adantr 479 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3331, 32sseldd 3981 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋𝑉)
341, 6, 22lmod0vrid 20781 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3519, 33, 34syl2anc 582 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3625, 35eqtrd 2767 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = 𝑋)
3736, 32eqeltrd 2828 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3837eldifbd 3960 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
39 simprr 771 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
40 oveq1 7431 . . . . . . . . . . 11 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑟( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
4140oveq2d 7440 . . . . . . . . . 10 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
4241eleq1d 2813 . . . . . . . . 9 (𝑟 = (0g‘(Scalar‘𝑊)) → ((𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) ↔ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4339, 42syl5ibcom 244 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4443necon3bd 2950 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) → 𝑟 ≠ (0g‘(Scalar‘𝑊))))
4538, 44mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ≠ (0g‘(Scalar‘𝑊)))
46 eqid 2727 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
47 eqid 2727 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
48 eqid 2727 . . . . . . 7 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
495, 21, 46, 47, 48drnginvrl 20654 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5017, 18, 45, 49syl3anc 1368 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5150oveq1d 7439 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
525, 21, 48drnginvrcl 20651 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
5317, 18, 45, 52syl3anc 1368 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
541, 4, 7, 5, 46lmodvsass 20775 . . . . 5 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
5519, 53, 18, 20, 54syl13anc 1369 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
561, 4, 7, 47lmodvs1 20778 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5719, 20, 56syl2anc 582 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5851, 55, 573eqtr3d 2775 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) = 𝑌)
5933snssd 4815 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑋} ⊆ 𝑉)
6026, 59unssd 4186 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ 𝑉)
611, 2, 3lspcl 20865 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
6219, 60, 61syl2anc 582 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
631, 4, 7, 5lmodvscl 20766 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
6419, 18, 20, 63syl3anc 1368 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
65 eqid 2727 . . . . . . 7 (-g𝑊) = (-g𝑊)
661, 6, 65lmodvpncan 20803 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
6719, 64, 33, 66syl3anc 1368 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
681, 6lmodcom 20796 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
6919, 64, 33, 68syl3anc 1368 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
70 ssun1 4172 . . . . . . . . . 10 𝐴 ⊆ (𝐴 ∪ {𝑋})
7170a1i 11 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴 ⊆ (𝐴 ∪ {𝑋}))
721, 3lspss 20873 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉𝐴 ⊆ (𝐴 ∪ {𝑋})) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7319, 60, 71, 72syl3anc 1368 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7473, 39sseldd 3981 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
7569, 74eqeltrd 2828 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
761, 3lspssid 20874 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7719, 60, 76syl2anc 582 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
78 snidg 4665 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
79 elun2 4177 . . . . . . . 8 (𝑋 ∈ {𝑋} → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8033, 78, 793syl 18 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8177, 80sseldd 3981 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8265, 2lssvsubcl 20833 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})) ∧ 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8319, 62, 75, 81, 82syl22anc 837 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8467, 83eqeltrrd 2829 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
854, 7, 5, 2lssvscl 20844 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8619, 62, 53, 84, 85syl22anc 837 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8758, 86eqeltrrd 2829 . 2 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8815, 87rexlimddv 3157 1 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2936  wrex 3066  {crab 3428  cdif 3944  cun 3945  wss 3947  {csn 4630  cfv 6551  (class class class)co 7424  Basecbs 17185  +gcplusg 17238  .rcmulr 17239  Scalarcsca 17241   ·𝑠 cvsca 17242  0gc0g 17426  -gcsg 18897  1rcur 20126  invrcinvr 20331  DivRingcdr 20629  LModclmod 20748  LSubSpclss 20820  LSpanclspn 20860  LVecclvec 20992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-tpos 8236  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-0g 17428  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18898  df-minusg 18899  df-sbg 18900  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-oppr 20278  df-dvdsr 20301  df-unit 20302  df-invr 20332  df-drng 20631  df-lmod 20750  df-lss 20821  df-lsp 20861  df-lvec 20993
This theorem is referenced by:  lssacsex  21037  lspsnat  21038  lsppratlem1  21040  lsppratlem3  21042  lsppratlem4  21043  lbsextlem4  21054  lindsadd  37091  lindsenlbs  37093
  Copyright terms: Public domain W3C validator