MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolv Structured version   Visualization version   GIF version

Theorem lspsolv 21163
Description: If 𝑋 is in the span of 𝐴 ∪ {𝑌} but not 𝐴, then 𝑌 is in the span of 𝐴 ∪ {𝑋}. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v 𝑉 = (Base‘𝑊)
lspsolv.s 𝑆 = (LSubSp‘𝑊)
lspsolv.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsolv ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))

Proof of Theorem lspsolv
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.v . . 3 𝑉 = (Base‘𝑊)
2 lspsolv.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspsolv.n . . 3 𝑁 = (LSpan‘𝑊)
4 eqid 2735 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2735 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2735 . . 3 (+g𝑊) = (+g𝑊)
7 eqid 2735 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2735 . . 3 {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)} = {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)}
9 lveclmod 21123 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
109adantr 480 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑊 ∈ LMod)
11 simpr1 1193 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝐴𝑉)
12 simpr2 1194 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌𝑉)
13 simpr3 1195 . . . 4 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
1413eldifad 3975 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
151, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14lspsolvlem 21162 . 2 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
164lvecdrng 21122 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
1716ad2antrr 726 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (Scalar‘𝑊) ∈ DivRing)
18 simprl 771 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
1910adantr 480 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑊 ∈ LMod)
2012adantr 480 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌𝑉)
21 eqid 2735 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
22 eqid 2735 . . . . . . . . . . . . 13 (0g𝑊) = (0g𝑊)
231, 4, 7, 21, 22lmod0vs 20910 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2419, 20, 23syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2524oveq2d 7447 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)(0g𝑊)))
2611adantr 480 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴𝑉)
2720snssd 4814 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑌} ⊆ 𝑉)
2826, 27unssd 4202 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑌}) ⊆ 𝑉)
291, 3lspssv 20999 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3019, 28, 29syl2anc 584 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3130ssdifssd 4157 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)) ⊆ 𝑉)
3213adantr 480 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3331, 32sseldd 3996 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋𝑉)
341, 6, 22lmod0vrid 20908 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3519, 33, 34syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3625, 35eqtrd 2775 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = 𝑋)
3736, 32eqeltrd 2839 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3837eldifbd 3976 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
39 simprr 773 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
40 oveq1 7438 . . . . . . . . . . 11 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑟( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
4140oveq2d 7447 . . . . . . . . . 10 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
4241eleq1d 2824 . . . . . . . . 9 (𝑟 = (0g‘(Scalar‘𝑊)) → ((𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) ↔ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4339, 42syl5ibcom 245 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4443necon3bd 2952 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) → 𝑟 ≠ (0g‘(Scalar‘𝑊))))
4538, 44mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ≠ (0g‘(Scalar‘𝑊)))
46 eqid 2735 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
47 eqid 2735 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
48 eqid 2735 . . . . . . 7 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
495, 21, 46, 47, 48drnginvrl 20773 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5017, 18, 45, 49syl3anc 1370 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5150oveq1d 7446 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
525, 21, 48drnginvrcl 20770 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
5317, 18, 45, 52syl3anc 1370 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
541, 4, 7, 5, 46lmodvsass 20902 . . . . 5 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
5519, 53, 18, 20, 54syl13anc 1371 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
561, 4, 7, 47lmodvs1 20905 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5719, 20, 56syl2anc 584 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5851, 55, 573eqtr3d 2783 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) = 𝑌)
5933snssd 4814 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑋} ⊆ 𝑉)
6026, 59unssd 4202 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ 𝑉)
611, 2, 3lspcl 20992 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
6219, 60, 61syl2anc 584 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
631, 4, 7, 5lmodvscl 20893 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
6419, 18, 20, 63syl3anc 1370 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
65 eqid 2735 . . . . . . 7 (-g𝑊) = (-g𝑊)
661, 6, 65lmodvpncan 20930 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
6719, 64, 33, 66syl3anc 1370 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
681, 6lmodcom 20923 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
6919, 64, 33, 68syl3anc 1370 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
70 ssun1 4188 . . . . . . . . . 10 𝐴 ⊆ (𝐴 ∪ {𝑋})
7170a1i 11 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴 ⊆ (𝐴 ∪ {𝑋}))
721, 3lspss 21000 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉𝐴 ⊆ (𝐴 ∪ {𝑋})) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7319, 60, 71, 72syl3anc 1370 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7473, 39sseldd 3996 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
7569, 74eqeltrd 2839 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
761, 3lspssid 21001 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7719, 60, 76syl2anc 584 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
78 snidg 4665 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
79 elun2 4193 . . . . . . . 8 (𝑋 ∈ {𝑋} → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8033, 78, 793syl 18 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8177, 80sseldd 3996 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8265, 2lssvsubcl 20960 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})) ∧ 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8319, 62, 75, 81, 82syl22anc 839 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8467, 83eqeltrrd 2840 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
854, 7, 5, 2lssvscl 20971 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8619, 62, 53, 84, 85syl22anc 839 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8758, 86eqeltrrd 2840 . 2 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8815, 87rexlimddv 3159 1 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  cdif 3960  cun 3961  wss 3963  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  -gcsg 18966  1rcur 20199  invrcinvr 20404  DivRingcdr 20746  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120
This theorem is referenced by:  lssacsex  21164  lspsnat  21165  lsppratlem1  21167  lsppratlem3  21169  lsppratlem4  21170  lbsextlem4  21181  lindsadd  37600  lindsenlbs  37602
  Copyright terms: Public domain W3C validator