Proof of Theorem lnomul
Step | Hyp | Ref
| Expression |
1 | | simpl 486 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿)) |
2 | | simprl 771 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ ℂ) |
3 | | simprr 773 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
4 | | simpl1 1192 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) |
5 | | lnomul.1 |
. . . . 5
⊢ 𝑋 = (BaseSet‘𝑈) |
6 | | eqid 2738 |
. . . . 5
⊢
(0vec‘𝑈) = (0vec‘𝑈) |
7 | 5, 6 | nvzcl 28569 |
. . . 4
⊢ (𝑈 ∈ NrmCVec →
(0vec‘𝑈)
∈ 𝑋) |
8 | 4, 7 | syl 17 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (0vec‘𝑈) ∈ 𝑋) |
9 | | eqid 2738 |
. . . 4
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
10 | | eqid 2738 |
. . . 4
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
11 | | eqid 2738 |
. . . 4
⊢ (
+𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) |
12 | | lnomul.5 |
. . . 4
⊢ 𝑅 = (
·𝑠OLD ‘𝑈) |
13 | | lnomul.6 |
. . . 4
⊢ 𝑆 = (
·𝑠OLD ‘𝑊) |
14 | | lnomul.7 |
. . . 4
⊢ 𝐿 = (𝑈 LnOp 𝑊) |
15 | 5, 9, 10, 11, 12, 13, 14 | lnolin 28689 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ (0vec‘𝑈) ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣 ‘𝑈)(0vec‘𝑈))) = ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘(0vec‘𝑈)))) |
16 | 1, 2, 3, 8, 15 | syl13anc 1373 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣 ‘𝑈)(0vec‘𝑈))) = ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘(0vec‘𝑈)))) |
17 | 5, 12 | nvscl 28561 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵) ∈ 𝑋) |
18 | 4, 2, 3, 17 | syl3anc 1372 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑅𝐵) ∈ 𝑋) |
19 | 5, 10, 6 | nv0rid 28570 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑅𝐵) ∈ 𝑋) → ((𝐴𝑅𝐵)( +𝑣 ‘𝑈)(0vec‘𝑈)) = (𝐴𝑅𝐵)) |
20 | 4, 18, 19 | syl2anc 587 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝑅𝐵)( +𝑣 ‘𝑈)(0vec‘𝑈)) = (𝐴𝑅𝐵)) |
21 | 20 | fveq2d 6678 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣 ‘𝑈)(0vec‘𝑈))) = (𝑇‘(𝐴𝑅𝐵))) |
22 | | eqid 2738 |
. . . . . 6
⊢
(0vec‘𝑊) = (0vec‘𝑊) |
23 | 5, 9, 6, 22, 14 | lno0 28691 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘(0vec‘𝑈)) =
(0vec‘𝑊)) |
24 | 23 | oveq2d 7186 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘(0vec‘𝑈))) = ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(0vec‘𝑊))) |
25 | 24 | adantr 484 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘(0vec‘𝑈))) = ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(0vec‘𝑊))) |
26 | | simpl2 1193 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) |
27 | 5, 9, 14 | lnof 28690 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
28 | 27 | adantr 484 |
. . . . . 6
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
29 | 28, 3 | ffvelrnd 6862 |
. . . . 5
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) |
30 | 9, 13 | nvscl 28561 |
. . . . 5
⊢ ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ (BaseSet‘𝑊)) → (𝐴𝑆(𝑇‘𝐵)) ∈ (BaseSet‘𝑊)) |
31 | 26, 2, 29, 30 | syl3anc 1372 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑆(𝑇‘𝐵)) ∈ (BaseSet‘𝑊)) |
32 | 9, 11, 22 | nv0rid 28570 |
. . . 4
⊢ ((𝑊 ∈ NrmCVec ∧ (𝐴𝑆(𝑇‘𝐵)) ∈ (BaseSet‘𝑊)) → ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(0vec‘𝑊)) = (𝐴𝑆(𝑇‘𝐵))) |
33 | 26, 31, 32 | syl2anc 587 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(0vec‘𝑊)) = (𝐴𝑆(𝑇‘𝐵))) |
34 | 25, 33 | eqtrd 2773 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝑆(𝑇‘𝐵))( +𝑣 ‘𝑊)(𝑇‘(0vec‘𝑈))) = (𝐴𝑆(𝑇‘𝐵))) |
35 | 16, 21, 34 | 3eqtr3d 2781 |
1
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇‘𝐵))) |