MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnomul Structured version   Visualization version   GIF version

Theorem lnomul 29122
Description: Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnomul.1 𝑋 = (BaseSet‘𝑈)
lnomul.5 𝑅 = ( ·𝑠OLD𝑈)
lnomul.6 𝑆 = ( ·𝑠OLD𝑊)
lnomul.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnomul (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))

Proof of Theorem lnomul
StepHypRef Expression
1 simpl 483 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿))
2 simprl 768 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐴 ∈ ℂ)
3 simprr 770 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐵𝑋)
4 simpl1 1190 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑈 ∈ NrmCVec)
5 lnomul.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
6 eqid 2738 . . . . 5 (0vec𝑈) = (0vec𝑈)
75, 6nvzcl 28996 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
84, 7syl 17 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (0vec𝑈) ∈ 𝑋)
9 eqid 2738 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
10 eqid 2738 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2738 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
12 lnomul.5 . . . 4 𝑅 = ( ·𝑠OLD𝑈)
13 lnomul.6 . . . 4 𝑆 = ( ·𝑠OLD𝑊)
14 lnomul.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
155, 9, 10, 11, 12, 13, 14lnolin 29116 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (0vec𝑈) ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
161, 2, 3, 8, 15syl13anc 1371 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
175, 12nvscl 28988 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑅𝐵) ∈ 𝑋)
184, 2, 3, 17syl3anc 1370 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑅𝐵) ∈ 𝑋)
195, 10, 6nv0rid 28997 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑅𝐵) ∈ 𝑋) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
204, 18, 19syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
2120fveq2d 6778 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = (𝑇‘(𝐴𝑅𝐵)))
22 eqid 2738 . . . . . 6 (0vec𝑊) = (0vec𝑊)
235, 9, 6, 22, 14lno0 29118 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
2423oveq2d 7291 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
2524adantr 481 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
26 simpl2 1191 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑊 ∈ NrmCVec)
275, 9, 14lnof 29117 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2827adantr 481 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2928, 3ffvelrnd 6962 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
309, 13nvscl 28988 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ (BaseSet‘𝑊)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
3126, 2, 29, 30syl3anc 1370 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
329, 11, 22nv0rid 28997 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3326, 31, 32syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3425, 33eqtrd 2778 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = (𝐴𝑆(𝑇𝐵)))
3516, 21, 343eqtr3d 2786 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  0veccn0v 28950   LnOp clno 29102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-lno 29106
This theorem is referenced by:  nmlno0lem  29155  nmblolbii  29161  blocnilem  29166  ubthlem2  29233
  Copyright terms: Public domain W3C validator