MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnomul Structured version   Visualization version   GIF version

Theorem lnomul 30741
Description: Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnomul.1 𝑋 = (BaseSet‘𝑈)
lnomul.5 𝑅 = ( ·𝑠OLD𝑈)
lnomul.6 𝑆 = ( ·𝑠OLD𝑊)
lnomul.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnomul (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))

Proof of Theorem lnomul
StepHypRef Expression
1 simpl 482 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿))
2 simprl 770 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐴 ∈ ℂ)
3 simprr 772 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐵𝑋)
4 simpl1 1192 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑈 ∈ NrmCVec)
5 lnomul.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
6 eqid 2735 . . . . 5 (0vec𝑈) = (0vec𝑈)
75, 6nvzcl 30615 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
84, 7syl 17 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (0vec𝑈) ∈ 𝑋)
9 eqid 2735 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
10 eqid 2735 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2735 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
12 lnomul.5 . . . 4 𝑅 = ( ·𝑠OLD𝑈)
13 lnomul.6 . . . 4 𝑆 = ( ·𝑠OLD𝑊)
14 lnomul.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
155, 9, 10, 11, 12, 13, 14lnolin 30735 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (0vec𝑈) ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
161, 2, 3, 8, 15syl13anc 1374 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
175, 12nvscl 30607 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑅𝐵) ∈ 𝑋)
184, 2, 3, 17syl3anc 1373 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑅𝐵) ∈ 𝑋)
195, 10, 6nv0rid 30616 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑅𝐵) ∈ 𝑋) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
204, 18, 19syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
2120fveq2d 6880 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = (𝑇‘(𝐴𝑅𝐵)))
22 eqid 2735 . . . . . 6 (0vec𝑊) = (0vec𝑊)
235, 9, 6, 22, 14lno0 30737 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
2423oveq2d 7421 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
2524adantr 480 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
26 simpl2 1193 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑊 ∈ NrmCVec)
275, 9, 14lnof 30736 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2827adantr 480 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2928, 3ffvelcdmd 7075 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
309, 13nvscl 30607 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ (BaseSet‘𝑊)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
3126, 2, 29, 30syl3anc 1373 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
329, 11, 22nv0rid 30616 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3326, 31, 32syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3425, 33eqtrd 2770 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = (𝐴𝑆(𝑇𝐵)))
3516, 21, 343eqtr3d 2778 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  NrmCVeccnv 30565   +𝑣 cpv 30566  BaseSetcba 30567   ·𝑠OLD cns 30568  0veccn0v 30569   LnOp clno 30721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468  df-neg 11469  df-grpo 30474  df-gid 30475  df-ginv 30476  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-nmcv 30581  df-lno 30725
This theorem is referenced by:  nmlno0lem  30774  nmblolbii  30780  blocnilem  30785  ubthlem2  30852
  Copyright terms: Public domain W3C validator