MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnomul Structured version   Visualization version   GIF version

Theorem lnomul 30662
Description: Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnomul.1 𝑋 = (BaseSet‘𝑈)
lnomul.5 𝑅 = ( ·𝑠OLD𝑈)
lnomul.6 𝑆 = ( ·𝑠OLD𝑊)
lnomul.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnomul (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))

Proof of Theorem lnomul
StepHypRef Expression
1 simpl 482 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿))
2 simprl 770 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐴 ∈ ℂ)
3 simprr 772 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐵𝑋)
4 simpl1 1192 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑈 ∈ NrmCVec)
5 lnomul.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
6 eqid 2729 . . . . 5 (0vec𝑈) = (0vec𝑈)
75, 6nvzcl 30536 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
84, 7syl 17 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (0vec𝑈) ∈ 𝑋)
9 eqid 2729 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
10 eqid 2729 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2729 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
12 lnomul.5 . . . 4 𝑅 = ( ·𝑠OLD𝑈)
13 lnomul.6 . . . 4 𝑆 = ( ·𝑠OLD𝑊)
14 lnomul.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
155, 9, 10, 11, 12, 13, 14lnolin 30656 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (0vec𝑈) ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
161, 2, 3, 8, 15syl13anc 1374 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
175, 12nvscl 30528 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑅𝐵) ∈ 𝑋)
184, 2, 3, 17syl3anc 1373 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑅𝐵) ∈ 𝑋)
195, 10, 6nv0rid 30537 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑅𝐵) ∈ 𝑋) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
204, 18, 19syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
2120fveq2d 6844 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = (𝑇‘(𝐴𝑅𝐵)))
22 eqid 2729 . . . . . 6 (0vec𝑊) = (0vec𝑊)
235, 9, 6, 22, 14lno0 30658 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
2423oveq2d 7385 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
2524adantr 480 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
26 simpl2 1193 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑊 ∈ NrmCVec)
275, 9, 14lnof 30657 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2827adantr 480 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2928, 3ffvelcdmd 7039 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
309, 13nvscl 30528 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ (BaseSet‘𝑊)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
3126, 2, 29, 30syl3anc 1373 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
329, 11, 22nv0rid 30537 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3326, 31, 32syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3425, 33eqtrd 2764 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = (𝐴𝑆(𝑇𝐵)))
3516, 21, 343eqtr3d 2772 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  NrmCVeccnv 30486   +𝑣 cpv 30487  BaseSetcba 30488   ·𝑠OLD cns 30489  0veccn0v 30490   LnOp clno 30642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-neg 11384  df-grpo 30395  df-gid 30396  df-ginv 30397  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-nmcv 30502  df-lno 30646
This theorem is referenced by:  nmlno0lem  30695  nmblolbii  30701  blocnilem  30706  ubthlem2  30773
  Copyright terms: Public domain W3C validator