MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnomul Structured version   Visualization version   GIF version

Theorem lnomul 30704
Description: Scalar multiplication property of a linear operator. (Contributed by NM, 5-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnomul.1 𝑋 = (BaseSet‘𝑈)
lnomul.5 𝑅 = ( ·𝑠OLD𝑈)
lnomul.6 𝑆 = ( ·𝑠OLD𝑊)
lnomul.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnomul (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))

Proof of Theorem lnomul
StepHypRef Expression
1 simpl 482 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿))
2 simprl 770 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐴 ∈ ℂ)
3 simprr 772 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝐵𝑋)
4 simpl1 1192 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑈 ∈ NrmCVec)
5 lnomul.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
6 eqid 2729 . . . . 5 (0vec𝑈) = (0vec𝑈)
75, 6nvzcl 30578 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
84, 7syl 17 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (0vec𝑈) ∈ 𝑋)
9 eqid 2729 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
10 eqid 2729 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2729 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
12 lnomul.5 . . . 4 𝑅 = ( ·𝑠OLD𝑈)
13 lnomul.6 . . . 4 𝑆 = ( ·𝑠OLD𝑊)
14 lnomul.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
155, 9, 10, 11, 12, 13, 14lnolin 30698 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋 ∧ (0vec𝑈) ∈ 𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
161, 2, 3, 8, 15syl13anc 1374 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))))
175, 12nvscl 30570 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴𝑅𝐵) ∈ 𝑋)
184, 2, 3, 17syl3anc 1373 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑅𝐵) ∈ 𝑋)
195, 10, 6nv0rid 30579 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑅𝐵) ∈ 𝑋) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
204, 18, 19syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈)) = (𝐴𝑅𝐵))
2120fveq2d 6826 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘((𝐴𝑅𝐵)( +𝑣𝑈)(0vec𝑈))) = (𝑇‘(𝐴𝑅𝐵)))
22 eqid 2729 . . . . . 6 (0vec𝑊) = (0vec𝑊)
235, 9, 6, 22, 14lno0 30700 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
2423oveq2d 7365 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
2524adantr 480 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)))
26 simpl2 1193 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑊 ∈ NrmCVec)
275, 9, 14lnof 30699 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2827adantr 480 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → 𝑇:𝑋⟶(BaseSet‘𝑊))
2928, 3ffvelcdmd 7019 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇𝐵) ∈ (BaseSet‘𝑊))
309, 13nvscl 30570 . . . . 5 ((𝑊 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ (BaseSet‘𝑊)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
3126, 2, 29, 30syl3anc 1373 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊))
329, 11, 22nv0rid 30579 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝐴𝑆(𝑇𝐵)) ∈ (BaseSet‘𝑊)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3326, 31, 32syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(0vec𝑊)) = (𝐴𝑆(𝑇𝐵)))
3425, 33eqtrd 2764 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → ((𝐴𝑆(𝑇𝐵))( +𝑣𝑊)(𝑇‘(0vec𝑈))) = (𝐴𝑆(𝑇𝐵)))
3516, 21, 343eqtr3d 2772 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (𝑇‘(𝐴𝑅𝐵)) = (𝐴𝑆(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530   ·𝑠OLD cns 30531  0veccn0v 30532   LnOp clno 30684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-grpo 30437  df-gid 30438  df-ginv 30439  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544  df-lno 30688
This theorem is referenced by:  nmlno0lem  30737  nmblolbii  30743  blocnilem  30748  ubthlem2  30815
  Copyright terms: Public domain W3C validator