![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lno0 | Structured version Visualization version GIF version |
Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lno0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lno0.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
lno0.5 | ⊢ 𝑄 = (0vec‘𝑈) |
lno0.z | ⊢ 𝑍 = (0vec‘𝑊) |
lno0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lno0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12407 | . . . . 5 ⊢ -1 ∈ ℂ | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → -1 ∈ ℂ) |
3 | lno0.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | lno0.5 | . . . . . 6 ⊢ 𝑄 = (0vec‘𝑈) | |
5 | 3, 4 | nvzcl 30666 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑄 ∈ 𝑋) |
6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑄 ∈ 𝑋) |
7 | 2, 6, 6 | 3jca 1128 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (-1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) |
8 | lno0.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
9 | eqid 2740 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
10 | eqid 2740 | . . . 4 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
11 | eqid 2740 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
12 | eqid 2740 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
13 | lno0.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
14 | 3, 8, 9, 10, 11, 12, 13 | lnolin 30786 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄))) |
15 | 7, 14 | mpdan 686 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄))) |
16 | 3, 9, 11, 4 | nvlinv 30684 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ 𝑋) → ((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄) = 𝑄) |
17 | 5, 16 | mpdan 686 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄) = 𝑄) |
18 | 17 | fveq2d 6924 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = (𝑇‘𝑄)) |
19 | 18 | 3ad2ant1 1133 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = (𝑇‘𝑄)) |
20 | simp2 1137 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑊 ∈ NrmCVec) | |
21 | 3, 8, 13 | lnof 30787 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
22 | 21, 6 | ffvelcdmd 7119 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) ∈ 𝑌) |
23 | lno0.z | . . . 4 ⊢ 𝑍 = (0vec‘𝑊) | |
24 | 8, 10, 12, 23 | nvlinv 30684 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑄) ∈ 𝑌) → ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄)) = 𝑍) |
25 | 20, 22, 24 | syl2anc 583 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄)) = 𝑍) |
26 | 15, 19, 25 | 3eqtr3d 2788 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 1c1 11185 -cneg 11521 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 0veccn0v 30620 LnOp clno 30772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 df-lno 30776 |
This theorem is referenced by: lnomul 30792 nmlno0lem 30825 nmlnoubi 30828 lnon0 30830 nmblolbii 30831 blocnilem 30836 |
Copyright terms: Public domain | W3C validator |