![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lno0 | Structured version Visualization version GIF version |
Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lno0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lno0.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
lno0.5 | ⊢ 𝑄 = (0vec‘𝑈) |
lno0.z | ⊢ 𝑍 = (0vec‘𝑊) |
lno0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lno0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12359 | . . . . 5 ⊢ -1 ∈ ℂ | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → -1 ∈ ℂ) |
3 | lno0.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | lno0.5 | . . . . . 6 ⊢ 𝑄 = (0vec‘𝑈) | |
5 | 3, 4 | nvzcl 30516 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑄 ∈ 𝑋) |
6 | 5 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑄 ∈ 𝑋) |
7 | 2, 6, 6 | 3jca 1125 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (-1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) |
8 | lno0.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
9 | eqid 2725 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
10 | eqid 2725 | . . . 4 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
11 | eqid 2725 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
12 | eqid 2725 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
13 | lno0.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
14 | 3, 8, 9, 10, 11, 12, 13 | lnolin 30636 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄))) |
15 | 7, 14 | mpdan 685 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄))) |
16 | 3, 9, 11, 4 | nvlinv 30534 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ 𝑋) → ((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄) = 𝑄) |
17 | 5, 16 | mpdan 685 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄) = 𝑄) |
18 | 17 | fveq2d 6900 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = (𝑇‘𝑄)) |
19 | 18 | 3ad2ant1 1130 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = (𝑇‘𝑄)) |
20 | simp2 1134 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑊 ∈ NrmCVec) | |
21 | 3, 8, 13 | lnof 30637 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
22 | 21, 6 | ffvelcdmd 7094 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) ∈ 𝑌) |
23 | lno0.z | . . . 4 ⊢ 𝑍 = (0vec‘𝑊) | |
24 | 8, 10, 12, 23 | nvlinv 30534 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑄) ∈ 𝑌) → ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄)) = 𝑍) |
25 | 20, 22, 24 | syl2anc 582 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄)) = 𝑍) |
26 | 15, 19, 25 | 3eqtr3d 2773 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 1c1 11141 -cneg 11477 NrmCVeccnv 30466 +𝑣 cpv 30467 BaseSetcba 30468 ·𝑠OLD cns 30469 0veccn0v 30470 LnOp clno 30622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-ltxr 11285 df-sub 11478 df-neg 11479 df-grpo 30375 df-gid 30376 df-ginv 30377 df-ablo 30427 df-vc 30441 df-nv 30474 df-va 30477 df-ba 30478 df-sm 30479 df-0v 30480 df-nmcv 30482 df-lno 30626 |
This theorem is referenced by: lnomul 30642 nmlno0lem 30675 nmlnoubi 30678 lnon0 30680 nmblolbii 30681 blocnilem 30686 |
Copyright terms: Public domain | W3C validator |