| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lno0 | Structured version Visualization version GIF version | ||
| Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lno0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| lno0.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| lno0.5 | ⊢ 𝑄 = (0vec‘𝑈) |
| lno0.z | ⊢ 𝑍 = (0vec‘𝑊) |
| lno0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| lno0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12131 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → -1 ∈ ℂ) |
| 3 | lno0.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | lno0.5 | . . . . . 6 ⊢ 𝑄 = (0vec‘𝑈) | |
| 5 | 3, 4 | nvzcl 30596 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑄 ∈ 𝑋) |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑄 ∈ 𝑋) |
| 7 | 2, 6, 6 | 3jca 1128 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (-1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) |
| 8 | lno0.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 9 | eqid 2729 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 10 | eqid 2729 | . . . 4 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 11 | eqid 2729 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 12 | eqid 2729 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 13 | lno0.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 14 | 3, 8, 9, 10, 11, 12, 13 | lnolin 30716 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄))) |
| 15 | 7, 14 | mpdan 687 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄))) |
| 16 | 3, 9, 11, 4 | nvlinv 30614 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ 𝑋) → ((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄) = 𝑄) |
| 17 | 5, 16 | mpdan 687 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄) = 𝑄) |
| 18 | 17 | fveq2d 6830 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = (𝑇‘𝑄)) |
| 19 | 18 | 3ad2ant1 1133 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = (𝑇‘𝑄)) |
| 20 | simp2 1137 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑊 ∈ NrmCVec) | |
| 21 | 3, 8, 13 | lnof 30717 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
| 22 | 21, 6 | ffvelcdmd 7023 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) ∈ 𝑌) |
| 23 | lno0.z | . . . 4 ⊢ 𝑍 = (0vec‘𝑊) | |
| 24 | 8, 10, 12, 23 | nvlinv 30614 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑄) ∈ 𝑌) → ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄)) = 𝑍) |
| 25 | 20, 22, 24 | syl2anc 584 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄)) = 𝑍) |
| 26 | 15, 19, 25 | 3eqtr3d 2772 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 1c1 11029 -cneg 11366 NrmCVeccnv 30546 +𝑣 cpv 30547 BaseSetcba 30548 ·𝑠OLD cns 30549 0veccn0v 30550 LnOp clno 30702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-neg 11368 df-grpo 30455 df-gid 30456 df-ginv 30457 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-nmcv 30562 df-lno 30706 |
| This theorem is referenced by: lnomul 30722 nmlno0lem 30755 nmlnoubi 30758 lnon0 30760 nmblolbii 30761 blocnilem 30766 |
| Copyright terms: Public domain | W3C validator |