MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lno0 Structured version   Visualization version   GIF version

Theorem lno0 30718
Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lno0.1 𝑋 = (BaseSet‘𝑈)
lno0.2 𝑌 = (BaseSet‘𝑊)
lno0.5 𝑄 = (0vec𝑈)
lno0.z 𝑍 = (0vec𝑊)
lno0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lno0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) = 𝑍)

Proof of Theorem lno0
StepHypRef Expression
1 neg1cn 12131 . . . . 5 -1 ∈ ℂ
21a1i 11 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → -1 ∈ ℂ)
3 lno0.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
4 lno0.5 . . . . . 6 𝑄 = (0vec𝑈)
53, 4nvzcl 30596 . . . . 5 (𝑈 ∈ NrmCVec → 𝑄𝑋)
653ad2ant1 1133 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑄𝑋)
72, 6, 63jca 1128 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (-1 ∈ ℂ ∧ 𝑄𝑋𝑄𝑋))
8 lno0.2 . . . 4 𝑌 = (BaseSet‘𝑊)
9 eqid 2729 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
10 eqid 2729 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
11 eqid 2729 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
12 eqid 2729 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
13 lno0.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
143, 8, 9, 10, 11, 12, 13lnolin 30716 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (-1 ∈ ℂ ∧ 𝑄𝑋𝑄𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)))
157, 14mpdan 687 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)))
163, 9, 11, 4nvlinv 30614 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑄𝑋) → ((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄) = 𝑄)
175, 16mpdan 687 . . . 4 (𝑈 ∈ NrmCVec → ((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄) = 𝑄)
1817fveq2d 6830 . . 3 (𝑈 ∈ NrmCVec → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = (𝑇𝑄))
19183ad2ant1 1133 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = (𝑇𝑄))
20 simp2 1137 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑊 ∈ NrmCVec)
213, 8, 13lnof 30717 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
2221, 6ffvelcdmd 7023 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) ∈ 𝑌)
23 lno0.z . . . 4 𝑍 = (0vec𝑊)
248, 10, 12, 23nvlinv 30614 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑄) ∈ 𝑌) → ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)) = 𝑍)
2520, 22, 24syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)) = 𝑍)
2615, 19, 253eqtr3d 2772 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026  1c1 11029  -cneg 11366  NrmCVeccnv 30546   +𝑣 cpv 30547  BaseSetcba 30548   ·𝑠OLD cns 30549  0veccn0v 30550   LnOp clno 30702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-sub 11367  df-neg 11368  df-grpo 30455  df-gid 30456  df-ginv 30457  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-nmcv 30562  df-lno 30706
This theorem is referenced by:  lnomul  30722  nmlno0lem  30755  nmlnoubi  30758  lnon0  30760  nmblolbii  30761  blocnilem  30766
  Copyright terms: Public domain W3C validator