| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lno0 | Structured version Visualization version GIF version | ||
| Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lno0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| lno0.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| lno0.5 | ⊢ 𝑄 = (0vec‘𝑈) |
| lno0.z | ⊢ 𝑍 = (0vec‘𝑊) |
| lno0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| lno0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12119 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → -1 ∈ ℂ) |
| 3 | lno0.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | lno0.5 | . . . . . 6 ⊢ 𝑄 = (0vec‘𝑈) | |
| 5 | 3, 4 | nvzcl 30618 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑄 ∈ 𝑋) |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑄 ∈ 𝑋) |
| 7 | 2, 6, 6 | 3jca 1128 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (-1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) |
| 8 | lno0.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 9 | eqid 2733 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 10 | eqid 2733 | . . . 4 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 11 | eqid 2733 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 12 | eqid 2733 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 13 | lno0.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 14 | 3, 8, 9, 10, 11, 12, 13 | lnolin 30738 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ ℂ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄))) |
| 15 | 7, 14 | mpdan 687 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄))) |
| 16 | 3, 9, 11, 4 | nvlinv 30636 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑄 ∈ 𝑋) → ((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄) = 𝑄) |
| 17 | 5, 16 | mpdan 687 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄) = 𝑄) |
| 18 | 17 | fveq2d 6834 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = (𝑇‘𝑄)) |
| 19 | 18 | 3ad2ant1 1133 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘((-1( ·𝑠OLD ‘𝑈)𝑄)( +𝑣 ‘𝑈)𝑄)) = (𝑇‘𝑄)) |
| 20 | simp2 1137 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑊 ∈ NrmCVec) | |
| 21 | 3, 8, 13 | lnof 30739 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑌) |
| 22 | 21, 6 | ffvelcdmd 7026 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) ∈ 𝑌) |
| 23 | lno0.z | . . . 4 ⊢ 𝑍 = (0vec‘𝑊) | |
| 24 | 8, 10, 12, 23 | nvlinv 30636 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑄) ∈ 𝑌) → ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄)) = 𝑍) |
| 25 | 20, 22, 24 | syl2anc 584 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((-1( ·𝑠OLD ‘𝑊)(𝑇‘𝑄))( +𝑣 ‘𝑊)(𝑇‘𝑄)) = 𝑍) |
| 26 | 15, 19, 25 | 3eqtr3d 2776 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑄) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 1c1 11016 -cneg 11354 NrmCVeccnv 30568 +𝑣 cpv 30569 BaseSetcba 30570 ·𝑠OLD cns 30571 0veccn0v 30572 LnOp clno 30724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-ltxr 11160 df-sub 11355 df-neg 11356 df-grpo 30477 df-gid 30478 df-ginv 30479 df-ablo 30529 df-vc 30543 df-nv 30576 df-va 30579 df-ba 30580 df-sm 30581 df-0v 30582 df-nmcv 30584 df-lno 30728 |
| This theorem is referenced by: lnomul 30744 nmlno0lem 30777 nmlnoubi 30780 lnon0 30782 nmblolbii 30783 blocnilem 30788 |
| Copyright terms: Public domain | W3C validator |