MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lno0 Structured version   Visualization version   GIF version

Theorem lno0 30775
Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lno0.1 𝑋 = (BaseSet‘𝑈)
lno0.2 𝑌 = (BaseSet‘𝑊)
lno0.5 𝑄 = (0vec𝑈)
lno0.z 𝑍 = (0vec𝑊)
lno0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lno0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) = 𝑍)

Proof of Theorem lno0
StepHypRef Expression
1 neg1cn 12380 . . . . 5 -1 ∈ ℂ
21a1i 11 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → -1 ∈ ℂ)
3 lno0.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
4 lno0.5 . . . . . 6 𝑄 = (0vec𝑈)
53, 4nvzcl 30653 . . . . 5 (𝑈 ∈ NrmCVec → 𝑄𝑋)
653ad2ant1 1134 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑄𝑋)
72, 6, 63jca 1129 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (-1 ∈ ℂ ∧ 𝑄𝑋𝑄𝑋))
8 lno0.2 . . . 4 𝑌 = (BaseSet‘𝑊)
9 eqid 2737 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
10 eqid 2737 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
11 eqid 2737 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
12 eqid 2737 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
13 lno0.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
143, 8, 9, 10, 11, 12, 13lnolin 30773 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (-1 ∈ ℂ ∧ 𝑄𝑋𝑄𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)))
157, 14mpdan 687 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)))
163, 9, 11, 4nvlinv 30671 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑄𝑋) → ((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄) = 𝑄)
175, 16mpdan 687 . . . 4 (𝑈 ∈ NrmCVec → ((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄) = 𝑄)
1817fveq2d 6910 . . 3 (𝑈 ∈ NrmCVec → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = (𝑇𝑄))
19183ad2ant1 1134 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = (𝑇𝑄))
20 simp2 1138 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑊 ∈ NrmCVec)
213, 8, 13lnof 30774 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
2221, 6ffvelcdmd 7105 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) ∈ 𝑌)
23 lno0.z . . . 4 𝑍 = (0vec𝑊)
248, 10, 12, 23nvlinv 30671 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑄) ∈ 𝑌) → ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)) = 𝑍)
2520, 22, 24syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)) = 𝑍)
2615, 19, 253eqtr3d 2785 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153  1c1 11156  -cneg 11493  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605   ·𝑠OLD cns 30606  0veccn0v 30607   LnOp clno 30759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619  df-lno 30763
This theorem is referenced by:  lnomul  30779  nmlno0lem  30812  nmlnoubi  30815  lnon0  30817  nmblolbii  30818  blocnilem  30823
  Copyright terms: Public domain W3C validator