MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lno0 Structured version   Visualization version   GIF version

Theorem lno0 29740
Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lno0.1 𝑋 = (BaseSetβ€˜π‘ˆ)
lno0.2 π‘Œ = (BaseSetβ€˜π‘Š)
lno0.5 𝑄 = (0vecβ€˜π‘ˆ)
lno0.z 𝑍 = (0vecβ€˜π‘Š)
lno0.7 𝐿 = (π‘ˆ LnOp π‘Š)
Assertion
Ref Expression
lno0 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ (π‘‡β€˜π‘„) = 𝑍)

Proof of Theorem lno0
StepHypRef Expression
1 neg1cn 12272 . . . . 5 -1 ∈ β„‚
21a1i 11 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ -1 ∈ β„‚)
3 lno0.1 . . . . . 6 𝑋 = (BaseSetβ€˜π‘ˆ)
4 lno0.5 . . . . . 6 𝑄 = (0vecβ€˜π‘ˆ)
53, 4nvzcl 29618 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ 𝑄 ∈ 𝑋)
653ad2ant1 1134 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ 𝑄 ∈ 𝑋)
72, 6, 63jca 1129 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ (-1 ∈ β„‚ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋))
8 lno0.2 . . . 4 π‘Œ = (BaseSetβ€˜π‘Š)
9 eqid 2733 . . . 4 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
10 eqid 2733 . . . 4 ( +𝑣 β€˜π‘Š) = ( +𝑣 β€˜π‘Š)
11 eqid 2733 . . . 4 ( ·𝑠OLD β€˜π‘ˆ) = ( ·𝑠OLD β€˜π‘ˆ)
12 eqid 2733 . . . 4 ( ·𝑠OLD β€˜π‘Š) = ( ·𝑠OLD β€˜π‘Š)
13 lno0.7 . . . 4 𝐿 = (π‘ˆ LnOp π‘Š)
143, 8, 9, 10, 11, 12, 13lnolin 29738 . . 3 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (-1 ∈ β„‚ ∧ 𝑄 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋)) β†’ (π‘‡β€˜((-1( ·𝑠OLD β€˜π‘ˆ)𝑄)( +𝑣 β€˜π‘ˆ)𝑄)) = ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π‘„))( +𝑣 β€˜π‘Š)(π‘‡β€˜π‘„)))
157, 14mpdan 686 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ (π‘‡β€˜((-1( ·𝑠OLD β€˜π‘ˆ)𝑄)( +𝑣 β€˜π‘ˆ)𝑄)) = ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π‘„))( +𝑣 β€˜π‘Š)(π‘‡β€˜π‘„)))
163, 9, 11, 4nvlinv 29636 . . . . 5 ((π‘ˆ ∈ NrmCVec ∧ 𝑄 ∈ 𝑋) β†’ ((-1( ·𝑠OLD β€˜π‘ˆ)𝑄)( +𝑣 β€˜π‘ˆ)𝑄) = 𝑄)
175, 16mpdan 686 . . . 4 (π‘ˆ ∈ NrmCVec β†’ ((-1( ·𝑠OLD β€˜π‘ˆ)𝑄)( +𝑣 β€˜π‘ˆ)𝑄) = 𝑄)
1817fveq2d 6847 . . 3 (π‘ˆ ∈ NrmCVec β†’ (π‘‡β€˜((-1( ·𝑠OLD β€˜π‘ˆ)𝑄)( +𝑣 β€˜π‘ˆ)𝑄)) = (π‘‡β€˜π‘„))
19183ad2ant1 1134 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ (π‘‡β€˜((-1( ·𝑠OLD β€˜π‘ˆ)𝑄)( +𝑣 β€˜π‘ˆ)𝑄)) = (π‘‡β€˜π‘„))
20 simp2 1138 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ π‘Š ∈ NrmCVec)
213, 8, 13lnof 29739 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ 𝑇:π‘‹βŸΆπ‘Œ)
2221, 6ffvelcdmd 7037 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ (π‘‡β€˜π‘„) ∈ π‘Œ)
23 lno0.z . . . 4 𝑍 = (0vecβ€˜π‘Š)
248, 10, 12, 23nvlinv 29636 . . 3 ((π‘Š ∈ NrmCVec ∧ (π‘‡β€˜π‘„) ∈ π‘Œ) β†’ ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π‘„))( +𝑣 β€˜π‘Š)(π‘‡β€˜π‘„)) = 𝑍)
2520, 22, 24syl2anc 585 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ ((-1( ·𝑠OLD β€˜π‘Š)(π‘‡β€˜π‘„))( +𝑣 β€˜π‘Š)(π‘‡β€˜π‘„)) = 𝑍)
2615, 19, 253eqtr3d 2781 1 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ (π‘‡β€˜π‘„) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  β€˜cfv 6497  (class class class)co 7358  β„‚cc 11054  1c1 11057  -cneg 11391  NrmCVeccnv 29568   +𝑣 cpv 29569  BaseSetcba 29570   ·𝑠OLD cns 29571  0veccn0v 29572   LnOp clno 29724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-er 8651  df-map 8770  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-ltxr 11199  df-sub 11392  df-neg 11393  df-grpo 29477  df-gid 29478  df-ginv 29479  df-ablo 29529  df-vc 29543  df-nv 29576  df-va 29579  df-ba 29580  df-sm 29581  df-0v 29582  df-nmcv 29584  df-lno 29728
This theorem is referenced by:  lnomul  29744  nmlno0lem  29777  nmlnoubi  29780  lnon0  29782  nmblolbii  29783  blocnilem  29788
  Copyright terms: Public domain W3C validator