MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lno0 Structured version   Visualization version   GIF version

Theorem lno0 28861
Description: The value of a linear operator at zero is zero. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 18-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lno0.1 𝑋 = (BaseSet‘𝑈)
lno0.2 𝑌 = (BaseSet‘𝑊)
lno0.5 𝑄 = (0vec𝑈)
lno0.z 𝑍 = (0vec𝑊)
lno0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lno0 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) = 𝑍)

Proof of Theorem lno0
StepHypRef Expression
1 neg1cn 11968 . . . . 5 -1 ∈ ℂ
21a1i 11 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → -1 ∈ ℂ)
3 lno0.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
4 lno0.5 . . . . . 6 𝑄 = (0vec𝑈)
53, 4nvzcl 28739 . . . . 5 (𝑈 ∈ NrmCVec → 𝑄𝑋)
653ad2ant1 1135 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑄𝑋)
72, 6, 63jca 1130 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (-1 ∈ ℂ ∧ 𝑄𝑋𝑄𝑋))
8 lno0.2 . . . 4 𝑌 = (BaseSet‘𝑊)
9 eqid 2738 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
10 eqid 2738 . . . 4 ( +𝑣𝑊) = ( +𝑣𝑊)
11 eqid 2738 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
12 eqid 2738 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
13 lno0.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
143, 8, 9, 10, 11, 12, 13lnolin 28859 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (-1 ∈ ℂ ∧ 𝑄𝑋𝑄𝑋)) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)))
157, 14mpdan 687 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)))
163, 9, 11, 4nvlinv 28757 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑄𝑋) → ((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄) = 𝑄)
175, 16mpdan 687 . . . 4 (𝑈 ∈ NrmCVec → ((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄) = 𝑄)
1817fveq2d 6739 . . 3 (𝑈 ∈ NrmCVec → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = (𝑇𝑄))
19183ad2ant1 1135 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘((-1( ·𝑠OLD𝑈)𝑄)( +𝑣𝑈)𝑄)) = (𝑇𝑄))
20 simp2 1139 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑊 ∈ NrmCVec)
213, 8, 13lnof 28860 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
2221, 6ffvelrnd 6923 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) ∈ 𝑌)
23 lno0.z . . . 4 𝑍 = (0vec𝑊)
248, 10, 12, 23nvlinv 28757 . . 3 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑄) ∈ 𝑌) → ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)) = 𝑍)
2520, 22, 24syl2anc 587 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ((-1( ·𝑠OLD𝑊)(𝑇𝑄))( +𝑣𝑊)(𝑇𝑄)) = 𝑍)
2615, 19, 253eqtr3d 2786 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑄) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2111  cfv 6397  (class class class)co 7231  cc 10751  1c1 10754  -cneg 11087  NrmCVeccnv 28689   +𝑣 cpv 28690  BaseSetcba 28691   ·𝑠OLD cns 28692  0veccn0v 28693   LnOp clno 28845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-id 5469  df-po 5482  df-so 5483  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-1st 7779  df-2nd 7780  df-er 8411  df-map 8530  df-en 8647  df-dom 8648  df-sdom 8649  df-pnf 10893  df-mnf 10894  df-ltxr 10896  df-sub 11088  df-neg 11089  df-grpo 28598  df-gid 28599  df-ginv 28600  df-ablo 28650  df-vc 28664  df-nv 28697  df-va 28700  df-ba 28701  df-sm 28702  df-0v 28703  df-nmcv 28705  df-lno 28849
This theorem is referenced by:  lnomul  28865  nmlno0lem  28898  nmlnoubi  28901  lnon0  28903  nmblolbii  28904  blocnilem  28909
  Copyright terms: Public domain W3C validator