MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlperpnel Structured version   Visualization version   GIF version

Theorem hlperpnel 27374
Description: A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
hlperpnel.a (𝜑𝐴 ∈ ran 𝐿)
hlperpnel.k 𝐾 = (hlG‘𝐺)
hlperpnel.1 (𝜑𝑈𝐴)
hlperpnel.2 (𝜑𝑉𝑃)
hlperpnel.3 (𝜑𝑊𝑃)
hlperpnel.4 (𝜑𝐴(⟂G‘𝐺)(𝑈𝐿𝑉))
hlperpnel.5 (𝜑𝑉(𝐾𝑈)𝑊)
Assertion
Ref Expression
hlperpnel (𝜑 → ¬ 𝑊𝐴)

Proof of Theorem hlperpnel
StepHypRef Expression
1 colperpex.p . 2 𝑃 = (Base‘𝐺)
2 colperpex.d . 2 = (dist‘𝐺)
3 colperpex.i . 2 𝐼 = (Itv‘𝐺)
4 colperpex.l . 2 𝐿 = (LineG‘𝐺)
5 colperpex.g . 2 (𝜑𝐺 ∈ TarskiG)
6 hlperpnel.a . 2 (𝜑𝐴 ∈ ran 𝐿)
7 hlperpnel.1 . 2 (𝜑𝑈𝐴)
8 hlperpnel.3 . 2 (𝜑𝑊𝑃)
91, 4, 3, 5, 6, 7tglnpt 27198 . . . 4 (𝜑𝑈𝑃)
10 hlperpnel.2 . . . 4 (𝜑𝑉𝑃)
11 hlperpnel.4 . . . . . 6 (𝜑𝐴(⟂G‘𝐺)(𝑈𝐿𝑉))
124, 5, 11perpln2 27360 . . . . 5 (𝜑 → (𝑈𝐿𝑉) ∈ ran 𝐿)
131, 3, 4, 5, 9, 10, 12tglnne 27277 . . . 4 (𝜑𝑈𝑉)
14 hlperpnel.k . . . . 5 𝐾 = (hlG‘𝐺)
15 hlperpnel.5 . . . . 5 (𝜑𝑉(𝐾𝑈)𝑊)
161, 3, 14, 10, 8, 9, 5, 15hlne2 27255 . . . 4 (𝜑𝑊𝑈)
171, 3, 14, 10, 8, 9, 5, 4, 15hlln 27256 . . . . 5 (𝜑𝑉 ∈ (𝑊𝐿𝑈))
181, 3, 4, 5, 9, 10, 8, 13, 17, 16lnrot1 27272 . . . 4 (𝜑𝑊 ∈ (𝑈𝐿𝑉))
191, 3, 4, 5, 9, 10, 13, 8, 16, 18tglineelsb2 27281 . . 3 (𝜑 → (𝑈𝐿𝑉) = (𝑈𝐿𝑊))
201, 2, 3, 4, 5, 6, 12, 11perpcom 27362 . . 3 (𝜑 → (𝑈𝐿𝑉)(⟂G‘𝐺)𝐴)
2119, 20eqbrtrrd 5120 . 2 (𝜑 → (𝑈𝐿𝑊)(⟂G‘𝐺)𝐴)
221, 2, 3, 4, 5, 6, 7, 8, 21footne 27372 1 (𝜑 → ¬ 𝑊𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106   class class class wbr 5096  ran crn 5625  cfv 6483  (class class class)co 7341  Basecbs 17009  distcds 17068  TarskiGcstrkg 27076  Itvcitv 27082  LineGclng 27083  hlGchlg 27249  ⟂Gcperpg 27344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-oadd 8375  df-er 8573  df-map 8692  df-pm 8693  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-dju 9762  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-xnn0 12411  df-z 12425  df-uz 12688  df-fz 13345  df-fzo 13488  df-hash 14150  df-word 14322  df-concat 14378  df-s1 14403  df-s2 14660  df-s3 14661  df-trkgc 27097  df-trkgb 27098  df-trkgcb 27099  df-trkg 27102  df-cgrg 27160  df-hlg 27250  df-mir 27302  df-rag 27343  df-perpg 27345
This theorem is referenced by:  opphllem5  27400
  Copyright terms: Public domain W3C validator