| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlperpnel | Structured version Visualization version GIF version | ||
| Description: A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
| Ref | Expression |
|---|---|
| colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
| colperpex.d | ⊢ − = (dist‘𝐺) |
| colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
| colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
| colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hlperpnel.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| hlperpnel.k | ⊢ 𝐾 = (hlG‘𝐺) |
| hlperpnel.1 | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| hlperpnel.2 | ⊢ (𝜑 → 𝑉 ∈ 𝑃) |
| hlperpnel.3 | ⊢ (𝜑 → 𝑊 ∈ 𝑃) |
| hlperpnel.4 | ⊢ (𝜑 → 𝐴(⟂G‘𝐺)(𝑈𝐿𝑉)) |
| hlperpnel.5 | ⊢ (𝜑 → 𝑉(𝐾‘𝑈)𝑊) |
| Ref | Expression |
|---|---|
| hlperpnel | ⊢ (𝜑 → ¬ 𝑊 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colperpex.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | colperpex.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | colperpex.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | colperpex.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | colperpex.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | hlperpnel.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 7 | hlperpnel.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
| 8 | hlperpnel.3 | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑃) | |
| 9 | 1, 4, 3, 5, 6, 7 | tglnpt 28530 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑃) |
| 10 | hlperpnel.2 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑃) | |
| 11 | hlperpnel.4 | . . . . . 6 ⊢ (𝜑 → 𝐴(⟂G‘𝐺)(𝑈𝐿𝑉)) | |
| 12 | 4, 5, 11 | perpln2 28692 | . . . . 5 ⊢ (𝜑 → (𝑈𝐿𝑉) ∈ ran 𝐿) |
| 13 | 1, 3, 4, 5, 9, 10, 12 | tglnne 28609 | . . . 4 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| 14 | hlperpnel.k | . . . . 5 ⊢ 𝐾 = (hlG‘𝐺) | |
| 15 | hlperpnel.5 | . . . . 5 ⊢ (𝜑 → 𝑉(𝐾‘𝑈)𝑊) | |
| 16 | 1, 3, 14, 10, 8, 9, 5, 15 | hlne2 28587 | . . . 4 ⊢ (𝜑 → 𝑊 ≠ 𝑈) |
| 17 | 1, 3, 14, 10, 8, 9, 5, 4, 15 | hlln 28588 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ (𝑊𝐿𝑈)) |
| 18 | 1, 3, 4, 5, 9, 10, 8, 13, 17, 16 | lnrot1 28604 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ (𝑈𝐿𝑉)) |
| 19 | 1, 3, 4, 5, 9, 10, 13, 8, 16, 18 | tglineelsb2 28613 | . . 3 ⊢ (𝜑 → (𝑈𝐿𝑉) = (𝑈𝐿𝑊)) |
| 20 | 1, 2, 3, 4, 5, 6, 12, 11 | perpcom 28694 | . . 3 ⊢ (𝜑 → (𝑈𝐿𝑉)(⟂G‘𝐺)𝐴) |
| 21 | 19, 20 | eqbrtrrd 5119 | . 2 ⊢ (𝜑 → (𝑈𝐿𝑊)(⟂G‘𝐺)𝐴) |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 21 | footne 28704 | 1 ⊢ (𝜑 → ¬ 𝑊 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ran crn 5622 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 distcds 17174 TarskiGcstrkg 28408 Itvcitv 28414 LineGclng 28415 hlGchlg 28581 ⟂Gcperpg 28676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-oadd 8397 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 df-s3 14760 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkg 28434 df-cgrg 28492 df-hlg 28582 df-mir 28634 df-rag 28675 df-perpg 28677 |
| This theorem is referenced by: opphllem5 28732 |
| Copyright terms: Public domain | W3C validator |