MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlperpnel Structured version   Visualization version   GIF version

Theorem hlperpnel 27067
Description: A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
hlperpnel.a (𝜑𝐴 ∈ ran 𝐿)
hlperpnel.k 𝐾 = (hlG‘𝐺)
hlperpnel.1 (𝜑𝑈𝐴)
hlperpnel.2 (𝜑𝑉𝑃)
hlperpnel.3 (𝜑𝑊𝑃)
hlperpnel.4 (𝜑𝐴(⟂G‘𝐺)(𝑈𝐿𝑉))
hlperpnel.5 (𝜑𝑉(𝐾𝑈)𝑊)
Assertion
Ref Expression
hlperpnel (𝜑 → ¬ 𝑊𝐴)

Proof of Theorem hlperpnel
StepHypRef Expression
1 colperpex.p . 2 𝑃 = (Base‘𝐺)
2 colperpex.d . 2 = (dist‘𝐺)
3 colperpex.i . 2 𝐼 = (Itv‘𝐺)
4 colperpex.l . 2 𝐿 = (LineG‘𝐺)
5 colperpex.g . 2 (𝜑𝐺 ∈ TarskiG)
6 hlperpnel.a . 2 (𝜑𝐴 ∈ ran 𝐿)
7 hlperpnel.1 . 2 (𝜑𝑈𝐴)
8 hlperpnel.3 . 2 (𝜑𝑊𝑃)
91, 4, 3, 5, 6, 7tglnpt 26891 . . . 4 (𝜑𝑈𝑃)
10 hlperpnel.2 . . . 4 (𝜑𝑉𝑃)
11 hlperpnel.4 . . . . . 6 (𝜑𝐴(⟂G‘𝐺)(𝑈𝐿𝑉))
124, 5, 11perpln2 27053 . . . . 5 (𝜑 → (𝑈𝐿𝑉) ∈ ran 𝐿)
131, 3, 4, 5, 9, 10, 12tglnne 26970 . . . 4 (𝜑𝑈𝑉)
14 hlperpnel.k . . . . 5 𝐾 = (hlG‘𝐺)
15 hlperpnel.5 . . . . 5 (𝜑𝑉(𝐾𝑈)𝑊)
161, 3, 14, 10, 8, 9, 5, 15hlne2 26948 . . . 4 (𝜑𝑊𝑈)
171, 3, 14, 10, 8, 9, 5, 4, 15hlln 26949 . . . . 5 (𝜑𝑉 ∈ (𝑊𝐿𝑈))
181, 3, 4, 5, 9, 10, 8, 13, 17, 16lnrot1 26965 . . . 4 (𝜑𝑊 ∈ (𝑈𝐿𝑉))
191, 3, 4, 5, 9, 10, 13, 8, 16, 18tglineelsb2 26974 . . 3 (𝜑 → (𝑈𝐿𝑉) = (𝑈𝐿𝑊))
201, 2, 3, 4, 5, 6, 12, 11perpcom 27055 . . 3 (𝜑 → (𝑈𝐿𝑉)(⟂G‘𝐺)𝐴)
2119, 20eqbrtrrd 5102 . 2 (𝜑 → (𝑈𝐿𝑊)(⟂G‘𝐺)𝐴)
221, 2, 3, 4, 5, 6, 7, 8, 21footne 27065 1 (𝜑 → ¬ 𝑊𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2109   class class class wbr 5078  ran crn 5589  cfv 6430  (class class class)co 7268  Basecbs 16893  distcds 16952  TarskiGcstrkg 26769  Itvcitv 26775  LineGclng 26776  hlGchlg 26942  ⟂Gcperpg 27037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-concat 14255  df-s1 14282  df-s2 14542  df-s3 14543  df-trkgc 26790  df-trkgb 26791  df-trkgcb 26792  df-trkg 26795  df-cgrg 26853  df-hlg 26943  df-mir 26995  df-rag 27036  df-perpg 27038
This theorem is referenced by:  opphllem5  27093
  Copyright terms: Public domain W3C validator