Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn2 Structured version   Visualization version   GIF version

Theorem lsatlspsn2 38973
Description: The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 38974 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lsatlspsn2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)

Proof of Theorem lsatlspsn2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 3simpc 1149 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑋𝑉𝑋0 ))
2 eldifsn 4790 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
31, 2sylibr 234 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
4 eqid 2734 . . 3 (𝑁‘{𝑋}) = (𝑁‘{𝑋})
5 sneq 4640 . . . . 5 (𝑣 = 𝑋 → {𝑣} = {𝑋})
65fveq2d 6910 . . . 4 (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋}))
76rspceeqv 3644 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
83, 4, 7sylancl 586 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
9 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
10 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
11 lsatset.z . . . 4 0 = (0g𝑊)
12 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
139, 10, 11, 12islsat 38972 . . 3 (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
14133ad2ant1 1132 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
158, 14mpbird 257 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067  cdif 3959  {csn 4630  cfv 6562  Basecbs 17244  0gc0g 17485  LModclmod 20874  LSpanclspn 20986  LSAtomsclsa 38955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-lsatoms 38957
This theorem is referenced by:  lsatel  38986  lsmsat  38989  lssatomic  38992  lssats  38993  dihlsprn  41313  dihatlat  41316  dihatexv  41320  dochsatshpb  41434
  Copyright terms: Public domain W3C validator