Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn2 Structured version   Visualization version   GIF version

Theorem lsatlspsn2 38956
Description: The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 38957 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lsatlspsn2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)

Proof of Theorem lsatlspsn2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 3simpc 1150 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑋𝑉𝑋0 ))
2 eldifsn 4762 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
31, 2sylibr 234 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
4 eqid 2735 . . 3 (𝑁‘{𝑋}) = (𝑁‘{𝑋})
5 sneq 4611 . . . . 5 (𝑣 = 𝑋 → {𝑣} = {𝑋})
65fveq2d 6879 . . . 4 (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋}))
76rspceeqv 3624 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
83, 4, 7sylancl 586 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
9 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
10 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
11 lsatset.z . . . 4 0 = (0g𝑊)
12 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
139, 10, 11, 12islsat 38955 . . 3 (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
14133ad2ant1 1133 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
158, 14mpbird 257 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cdif 3923  {csn 4601  cfv 6530  Basecbs 17226  0gc0g 17451  LModclmod 20815  LSpanclspn 20926  LSAtomsclsa 38938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-lsatoms 38940
This theorem is referenced by:  lsatel  38969  lsmsat  38972  lssatomic  38975  lssats  38976  dihlsprn  41296  dihatlat  41299  dihatexv  41303  dochsatshpb  41417
  Copyright terms: Public domain W3C validator