![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatlspsn2 | Structured version Visualization version GIF version |
Description: The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 38949 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
lsatset.v | ⊢ 𝑉 = (Base‘𝑊) |
lsatset.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsatset.z | ⊢ 0 = (0g‘𝑊) |
lsatset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
Ref | Expression |
---|---|
lsatlspsn2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1150 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
2 | eldifsn 4811 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
3 | 1, 2 | sylibr 234 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
4 | eqid 2740 | . . 3 ⊢ (𝑁‘{𝑋}) = (𝑁‘{𝑋}) | |
5 | sneq 4658 | . . . . 5 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
6 | 5 | fveq2d 6924 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋})) |
7 | 6 | rspceeqv 3658 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
8 | 3, 4, 7 | sylancl 585 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})) |
9 | lsatset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
10 | lsatset.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
11 | lsatset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
12 | lsatset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
13 | 9, 10, 11, 12 | islsat 38947 | . . 3 ⊢ (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
14 | 13 | 3ad2ant1 1133 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))) |
15 | 8, 14 | mpbird 257 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∖ cdif 3973 {csn 4648 ‘cfv 6573 Basecbs 17258 0gc0g 17499 LModclmod 20880 LSpanclspn 20992 LSAtomsclsa 38930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-lsatoms 38932 |
This theorem is referenced by: lsatel 38961 lsmsat 38964 lssatomic 38967 lssats 38968 dihlsprn 41288 dihatlat 41291 dihatexv 41295 dochsatshpb 41409 |
Copyright terms: Public domain | W3C validator |