Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlspsn2 Structured version   Visualization version   GIF version

Theorem lsatlspsn2 36933
Description: The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 36934 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lsatlspsn2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)

Proof of Theorem lsatlspsn2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 3simpc 1148 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑋𝑉𝑋0 ))
2 eldifsn 4717 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
31, 2sylibr 233 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
4 eqid 2738 . . 3 (𝑁‘{𝑋}) = (𝑁‘{𝑋})
5 sneq 4568 . . . . 5 (𝑣 = 𝑋 → {𝑣} = {𝑋})
65fveq2d 6760 . . . 4 (𝑣 = 𝑋 → (𝑁‘{𝑣}) = (𝑁‘{𝑋}))
76rspceeqv 3567 . . 3 ((𝑋 ∈ (𝑉 ∖ { 0 }) ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑋})) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
83, 4, 7sylancl 585 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣}))
9 lsatset.v . . . 4 𝑉 = (Base‘𝑊)
10 lsatset.n . . . 4 𝑁 = (LSpan‘𝑊)
11 lsatset.z . . . 4 0 = (0g𝑊)
12 lsatset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
139, 10, 11, 12islsat 36932 . . 3 (𝑊 ∈ LMod → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
14133ad2ant1 1131 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })(𝑁‘{𝑋}) = (𝑁‘{𝑣})))
158, 14mpbird 256 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  {csn 4558  cfv 6418  Basecbs 16840  0gc0g 17067  LModclmod 20038  LSpanclspn 20148  LSAtomsclsa 36915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-lsatoms 36917
This theorem is referenced by:  lsatel  36946  lsmsat  36949  lssatomic  36952  lssats  36953  dihlsprn  39272  dihatlat  39275  dihatexv  39279  dochsatshpb  39393
  Copyright terms: Public domain W3C validator