Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatel | Structured version Visualization version GIF version |
Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014.) |
Ref | Expression |
---|---|
lsatel.o | ⊢ 0 = (0g‘𝑊) |
lsatel.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsatel.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatel.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatel.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
lsatel.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lsatel.e | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Ref | Expression |
---|---|
lsatel | ⊢ (𝜑 → 𝑈 = (𝑁‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | lsatel.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lsatel.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lveclmod 20283 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | lsatel.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
7 | lsatel.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
8 | 1, 6, 5, 7 | lsatlssel 36938 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
9 | lsatel.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
10 | 1, 2, 5, 8, 9 | lspsnel5a 20173 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
11 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
12 | 11, 1 | lssel 20114 | . . . . . 6 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
13 | 8, 9, 12 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
14 | lsatel.e | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
15 | lsatel.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
16 | 11, 2, 15, 6 | lsatlspsn2 36933 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ 𝐴) |
17 | 5, 13, 14, 16 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
18 | 6, 3, 17, 7 | lsatcmp 36944 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ 𝑈 ↔ (𝑁‘{𝑋}) = 𝑈)) |
19 | 10, 18 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) = 𝑈) |
20 | 19 | eqcomd 2744 | 1 ⊢ (𝜑 → 𝑈 = (𝑁‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 LVecclvec 20279 LSAtomsclsa 36915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 |
This theorem is referenced by: lsatelbN 36947 lsat2el 36948 dihpN 39277 dochsnkr 39413 lcfrlem25 39508 lcfrlem35 39518 mapdpglem20 39632 |
Copyright terms: Public domain | W3C validator |