Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatel Structured version   Visualization version   GIF version

Theorem lsatel 38990
Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014.)
Hypotheses
Ref Expression
lsatel.o 0 = (0g𝑊)
lsatel.n 𝑁 = (LSpan‘𝑊)
lsatel.a 𝐴 = (LSAtoms‘𝑊)
lsatel.w (𝜑𝑊 ∈ LVec)
lsatel.u (𝜑𝑈𝐴)
lsatel.x (𝜑𝑋𝑈)
lsatel.e (𝜑𝑋0 )
Assertion
Ref Expression
lsatel (𝜑𝑈 = (𝑁‘{𝑋}))

Proof of Theorem lsatel
StepHypRef Expression
1 eqid 2730 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lsatel.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lsatel.w . . . . 5 (𝜑𝑊 ∈ LVec)
4 lveclmod 21019 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 lsatel.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
7 lsatel.u . . . . 5 (𝜑𝑈𝐴)
81, 6, 5, 7lsatlssel 38982 . . . 4 (𝜑𝑈 ∈ (LSubSp‘𝑊))
9 lsatel.x . . . 4 (𝜑𝑋𝑈)
101, 2, 5, 8, 9ellspsn5 20908 . . 3 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
11 eqid 2730 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1211, 1lssel 20849 . . . . . 6 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
138, 9, 12syl2anc 584 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑊))
14 lsatel.e . . . . 5 (𝜑𝑋0 )
15 lsatel.o . . . . . 6 0 = (0g𝑊)
1611, 2, 15, 6lsatlspsn2 38977 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
175, 13, 14, 16syl3anc 1373 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)
186, 3, 17, 7lsatcmp 38988 . . 3 (𝜑 → ((𝑁‘{𝑋}) ⊆ 𝑈 ↔ (𝑁‘{𝑋}) = 𝑈))
1910, 18mpbid 232 . 2 (𝜑 → (𝑁‘{𝑋}) = 𝑈)
2019eqcomd 2736 1 (𝜑𝑈 = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2927  wss 3922  {csn 4597  cfv 6519  Basecbs 17185  0gc0g 17408  LModclmod 20772  LSubSpclss 20843  LSpanclspn 20883  LVecclvec 21015  LSAtomsclsa 38959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lvec 21016  df-lsatoms 38961
This theorem is referenced by:  lsatelbN  38991  lsat2el  38992  dihpN  41322  dochsnkr  41458  lcfrlem25  41553  lcfrlem35  41563  mapdpglem20  41677
  Copyright terms: Public domain W3C validator