Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatel Structured version   Visualization version   GIF version

Theorem lsatel 37019
Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014.)
Hypotheses
Ref Expression
lsatel.o 0 = (0g𝑊)
lsatel.n 𝑁 = (LSpan‘𝑊)
lsatel.a 𝐴 = (LSAtoms‘𝑊)
lsatel.w (𝜑𝑊 ∈ LVec)
lsatel.u (𝜑𝑈𝐴)
lsatel.x (𝜑𝑋𝑈)
lsatel.e (𝜑𝑋0 )
Assertion
Ref Expression
lsatel (𝜑𝑈 = (𝑁‘{𝑋}))

Proof of Theorem lsatel
StepHypRef Expression
1 eqid 2738 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lsatel.n . . . 4 𝑁 = (LSpan‘𝑊)
3 lsatel.w . . . . 5 (𝜑𝑊 ∈ LVec)
4 lveclmod 20368 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 lsatel.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
7 lsatel.u . . . . 5 (𝜑𝑈𝐴)
81, 6, 5, 7lsatlssel 37011 . . . 4 (𝜑𝑈 ∈ (LSubSp‘𝑊))
9 lsatel.x . . . 4 (𝜑𝑋𝑈)
101, 2, 5, 8, 9lspsnel5a 20258 . . 3 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
11 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1211, 1lssel 20199 . . . . . 6 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
138, 9, 12syl2anc 584 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑊))
14 lsatel.e . . . . 5 (𝜑𝑋0 )
15 lsatel.o . . . . . 6 0 = (0g𝑊)
1611, 2, 15, 6lsatlspsn2 37006 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
175, 13, 14, 16syl3anc 1370 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)
186, 3, 17, 7lsatcmp 37017 . . 3 (𝜑 → ((𝑁‘{𝑋}) ⊆ 𝑈 ↔ (𝑁‘{𝑋}) = 𝑈))
1910, 18mpbid 231 . 2 (𝜑 → (𝑁‘{𝑋}) = 𝑈)
2019eqcomd 2744 1 (𝜑𝑈 = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  wss 3887  {csn 4561  cfv 6433  Basecbs 16912  0gc0g 17150  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364  LSAtomsclsa 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990
This theorem is referenced by:  lsatelbN  37020  lsat2el  37021  dihpN  39350  dochsnkr  39486  lcfrlem25  39581  lcfrlem35  39591  mapdpglem20  39705
  Copyright terms: Public domain W3C validator