Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltnltne Structured version   Visualization version   GIF version

Theorem ltnltne 47214
Description: Variant of trichotomy law for 'less than'. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
Assertion
Ref Expression
ltnltne ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴)))

Proof of Theorem ltnltne
StepHypRef Expression
1 ltnle 11369 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
2 leloe 11376 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ (𝐵 < 𝐴𝐵 = 𝐴)))
32ancoms 458 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ (𝐵 < 𝐴𝐵 = 𝐴)))
43notbid 318 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴 ↔ ¬ (𝐵 < 𝐴𝐵 = 𝐴)))
5 ioran 984 . . 3 (¬ (𝐵 < 𝐴𝐵 = 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴))
65a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐵 < 𝐴𝐵 = 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴)))
71, 4, 63bitrd 305 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108   class class class wbr 5166  cr 11183   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-pre-lttri 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator