Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltnltne Structured version   Visualization version   GIF version

Theorem ltnltne 44747
Description: Variant of trichotomy law for 'less than'. (Contributed by Alexander van der Vekens, 8-Jun-2018.)
Assertion
Ref Expression
ltnltne ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴)))

Proof of Theorem ltnltne
StepHypRef Expression
1 ltnle 11042 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
2 leloe 11049 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ (𝐵 < 𝐴𝐵 = 𝐴)))
32ancoms 459 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ (𝐵 < 𝐴𝐵 = 𝐴)))
43notbid 318 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴 ↔ ¬ (𝐵 < 𝐴𝐵 = 𝐴)))
5 ioran 981 . . 3 (¬ (𝐵 < 𝐴𝐵 = 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴))
65a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐵 < 𝐴𝐵 = 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴)))
71, 4, 63bitrd 305 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106   class class class wbr 5074  cr 10858   < clt 10997  cle 10998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-resscn 10916  ax-pre-lttri 10933
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator