| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11259 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-xr 11219 df-le 11221 |
| This theorem is referenced by: letric 11281 ltnled 11328 leaddsub 11661 mulge0b 12060 nnnle0 12226 nn0n0n1ge2b 12518 znnnlt1 12567 uzwo 12877 qsqueeze 13168 difreicc 13452 fzp1disj 13551 fzneuz 13576 fznuz 13577 uznfz 13578 difelfznle 13610 nelfzo 13632 ssfzoulel 13728 elfzonelfzo 13737 modfzo0difsn 13915 ssnn0fi 13957 discr1 14211 bcval5 14290 swrdnd 14626 swrdnnn0nd 14628 swrdnd0 14629 swrdsbslen 14636 swrdspsleq 14637 pfxnd0 14660 pfxccat3 14706 swrdccat 14707 pfxccat3a 14710 repswswrd 14756 cnpart 15213 absmax 15303 rlimrege0 15552 rpnnen2lem12 16200 alzdvds 16297 algcvgblem 16554 prmndvdsfaclt 16702 pcprendvds 16818 pcdvdsb 16847 pcmpt 16870 prmunb 16892 prmreclem2 16895 prmgaplem5 17033 prmgaplem6 17034 prmlem1 17085 prmlem2 17097 lt6abl 19832 metdseq0 24750 xrhmeo 24851 ovolicc2lem3 25427 itg2seq 25650 dvne0 25923 coeeulem 26136 radcnvlt1 26334 argimgt0 26528 cxple2 26613 ressatans 26851 eldmgm 26939 basellem2 26999 issqf 27053 bpos1 27201 bposlem3 27204 bposlem6 27207 2sqreulem1 27364 2sqreunnlem1 27367 pntpbnd2 27505 ostth2lem4 27554 crctcshwlkn0 29758 crctcsh 29761 eucrctshift 30179 ltflcei 37609 poimirlem4 37625 poimirlem13 37634 poimirlem14 37635 poimirlem15 37636 poimirlem31 37652 mblfinlem1 37658 mbfposadd 37668 itgaddnclem2 37680 ftc1anclem1 37694 ftc1anclem5 37698 dvasin 37705 reabsifnpos 43629 reabsifnneg 43631 icccncfext 45892 stoweidlem14 46019 stoweidlem34 46039 ltnltne 47304 nnsum4primeseven 47805 nnsum4primesevenALTV 47806 ply1mulgsumlem2 48380 |
| Copyright terms: Public domain | W3C validator |