| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11228 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-xr 11188 df-le 11190 |
| This theorem is referenced by: letric 11250 ltnled 11297 leaddsub 11630 mulge0b 12029 nnnle0 12195 nn0n0n1ge2b 12487 znnnlt1 12536 uzwo 12846 qsqueeze 13137 difreicc 13421 fzp1disj 13520 fzneuz 13545 fznuz 13546 uznfz 13547 difelfznle 13579 nelfzo 13601 ssfzoulel 13697 elfzonelfzo 13706 modfzo0difsn 13884 ssnn0fi 13926 discr1 14180 bcval5 14259 swrdnd 14595 swrdnnn0nd 14597 swrdnd0 14598 swrdsbslen 14605 swrdspsleq 14606 pfxnd0 14629 pfxccat3 14675 swrdccat 14676 pfxccat3a 14679 repswswrd 14725 cnpart 15182 absmax 15272 rlimrege0 15521 rpnnen2lem12 16169 alzdvds 16266 algcvgblem 16523 prmndvdsfaclt 16671 pcprendvds 16787 pcdvdsb 16816 pcmpt 16839 prmunb 16861 prmreclem2 16864 prmgaplem5 17002 prmgaplem6 17003 prmlem1 17054 prmlem2 17066 lt6abl 19801 metdseq0 24719 xrhmeo 24820 ovolicc2lem3 25396 itg2seq 25619 dvne0 25892 coeeulem 26105 radcnvlt1 26303 argimgt0 26497 cxple2 26582 ressatans 26820 eldmgm 26908 basellem2 26968 issqf 27022 bpos1 27170 bposlem3 27173 bposlem6 27176 2sqreulem1 27333 2sqreunnlem1 27336 pntpbnd2 27474 ostth2lem4 27523 crctcshwlkn0 29724 crctcsh 29727 eucrctshift 30145 ltflcei 37575 poimirlem4 37591 poimirlem13 37600 poimirlem14 37601 poimirlem15 37602 poimirlem31 37618 mblfinlem1 37624 mbfposadd 37634 itgaddnclem2 37646 ftc1anclem1 37660 ftc1anclem5 37664 dvasin 37671 reabsifnpos 43595 reabsifnneg 43597 icccncfext 45858 stoweidlem14 45985 stoweidlem34 46005 ltnltne 47273 nnsum4primeseven 47774 nnsum4primesevenALTV 47775 ply1mulgsumlem2 48349 |
| Copyright terms: Public domain | W3C validator |