| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11311 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝcr 11126 < clt 11267 ≤ cle 11268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-xr 11271 df-le 11273 |
| This theorem is referenced by: letric 11333 ltnled 11380 leaddsub 11711 mulge0b 12110 nnnle0 12271 nn0n0n1ge2b 12568 znnnlt1 12617 uzwo 12925 qsqueeze 13215 difreicc 13499 fzp1disj 13598 fzneuz 13623 fznuz 13624 uznfz 13625 difelfznle 13657 nelfzo 13679 ssfzoulel 13774 elfzonelfzo 13783 modfzo0difsn 13959 ssnn0fi 14001 discr1 14255 bcval5 14334 swrdnd 14670 swrdnnn0nd 14672 swrdnd0 14673 swrdsbslen 14680 swrdspsleq 14681 pfxnd0 14704 pfxccat3 14750 swrdccat 14751 pfxccat3a 14754 repswswrd 14800 cnpart 15257 absmax 15346 rlimrege0 15593 rpnnen2lem12 16241 alzdvds 16337 algcvgblem 16594 prmndvdsfaclt 16742 pcprendvds 16858 pcdvdsb 16887 pcmpt 16910 prmunb 16932 prmreclem2 16935 prmgaplem5 17073 prmgaplem6 17074 prmlem1 17125 prmlem2 17137 lt6abl 19874 metdseq0 24792 xrhmeo 24893 ovolicc2lem3 25470 itg2seq 25693 dvne0 25966 coeeulem 26179 radcnvlt1 26377 argimgt0 26571 cxple2 26656 ressatans 26894 eldmgm 26982 basellem2 27042 issqf 27096 bpos1 27244 bposlem3 27247 bposlem6 27250 2sqreulem1 27407 2sqreunnlem1 27410 pntpbnd2 27548 ostth2lem4 27597 crctcshwlkn0 29749 crctcsh 29752 eucrctshift 30170 ltflcei 37578 poimirlem4 37594 poimirlem13 37603 poimirlem14 37604 poimirlem15 37605 poimirlem31 37621 mblfinlem1 37627 mbfposadd 37637 itgaddnclem2 37649 ftc1anclem1 37663 ftc1anclem5 37667 dvasin 37674 reabsifnpos 43604 reabsifnneg 43606 icccncfext 45864 stoweidlem14 45991 stoweidlem34 46011 ltnltne 47276 nnsum4primeseven 47762 nnsum4primesevenALTV 47763 ply1mulgsumlem2 48311 |
| Copyright terms: Public domain | W3C validator |