| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11252 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-xr 11212 df-le 11214 |
| This theorem is referenced by: letric 11274 ltnled 11321 leaddsub 11654 mulge0b 12053 nnnle0 12219 nn0n0n1ge2b 12511 znnnlt1 12560 uzwo 12870 qsqueeze 13161 difreicc 13445 fzp1disj 13544 fzneuz 13569 fznuz 13570 uznfz 13571 difelfznle 13603 nelfzo 13625 ssfzoulel 13721 elfzonelfzo 13730 modfzo0difsn 13908 ssnn0fi 13950 discr1 14204 bcval5 14283 swrdnd 14619 swrdnnn0nd 14621 swrdnd0 14622 swrdsbslen 14629 swrdspsleq 14630 pfxnd0 14653 pfxccat3 14699 swrdccat 14700 pfxccat3a 14703 repswswrd 14749 cnpart 15206 absmax 15296 rlimrege0 15545 rpnnen2lem12 16193 alzdvds 16290 algcvgblem 16547 prmndvdsfaclt 16695 pcprendvds 16811 pcdvdsb 16840 pcmpt 16863 prmunb 16885 prmreclem2 16888 prmgaplem5 17026 prmgaplem6 17027 prmlem1 17078 prmlem2 17090 lt6abl 19825 metdseq0 24743 xrhmeo 24844 ovolicc2lem3 25420 itg2seq 25643 dvne0 25916 coeeulem 26129 radcnvlt1 26327 argimgt0 26521 cxple2 26606 ressatans 26844 eldmgm 26932 basellem2 26992 issqf 27046 bpos1 27194 bposlem3 27197 bposlem6 27200 2sqreulem1 27357 2sqreunnlem1 27360 pntpbnd2 27498 ostth2lem4 27547 crctcshwlkn0 29751 crctcsh 29754 eucrctshift 30172 ltflcei 37602 poimirlem4 37618 poimirlem13 37627 poimirlem14 37628 poimirlem15 37629 poimirlem31 37645 mblfinlem1 37651 mbfposadd 37661 itgaddnclem2 37673 ftc1anclem1 37687 ftc1anclem5 37691 dvasin 37698 reabsifnpos 43622 reabsifnneg 43624 icccncfext 45885 stoweidlem14 46012 stoweidlem34 46032 ltnltne 47300 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 ply1mulgsumlem2 48376 |
| Copyright terms: Public domain | W3C validator |