![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lenlt 11336 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 < clt 11292 ≤ cle 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-xr 11296 df-le 11298 |
This theorem is referenced by: letric 11358 ltnled 11405 leaddsub 11736 mulge0b 12135 nnnle0 12296 nn0n0n1ge2b 12592 znnnlt1 12641 uzwo 12950 qsqueeze 13239 difreicc 13520 fzp1disj 13619 fzneuz 13644 fznuz 13645 uznfz 13646 difelfznle 13678 nelfzo 13700 ssfzoulel 13795 elfzonelfzo 13804 modfzo0difsn 13980 ssnn0fi 14022 discr1 14274 bcval5 14353 swrdnd 14688 swrdnnn0nd 14690 swrdnd0 14691 swrdsbslen 14698 swrdspsleq 14699 pfxnd0 14722 pfxccat3 14768 swrdccat 14769 pfxccat3a 14772 repswswrd 14818 cnpart 15275 absmax 15364 rlimrege0 15611 rpnnen2lem12 16257 alzdvds 16353 algcvgblem 16610 prmndvdsfaclt 16758 pcprendvds 16873 pcdvdsb 16902 pcmpt 16925 prmunb 16947 prmreclem2 16950 prmgaplem5 17088 prmgaplem6 17089 prmlem1 17141 prmlem2 17153 lt6abl 19927 metdseq0 24889 xrhmeo 24990 ovolicc2lem3 25567 itg2seq 25791 dvne0 26064 coeeulem 26277 radcnvlt1 26475 argimgt0 26668 cxple2 26753 ressatans 26991 eldmgm 27079 basellem2 27139 issqf 27193 bpos1 27341 bposlem3 27344 bposlem6 27347 2sqreulem1 27504 2sqreunnlem1 27507 pntpbnd2 27645 ostth2lem4 27694 crctcshwlkn0 29850 crctcsh 29853 eucrctshift 30271 ltflcei 37594 poimirlem4 37610 poimirlem13 37619 poimirlem14 37620 poimirlem15 37621 poimirlem31 37637 mblfinlem1 37643 mbfposadd 37653 itgaddnclem2 37665 ftc1anclem1 37679 ftc1anclem5 37683 dvasin 37690 reabsifnpos 43622 reabsifnneg 43624 icccncfext 45842 stoweidlem14 45969 stoweidlem34 45989 ltnltne 47248 nnsum4primeseven 47724 nnsum4primesevenALTV 47725 ply1mulgsumlem2 48232 |
Copyright terms: Public domain | W3C validator |