| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11194 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 < clt 11149 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-xr 11153 df-le 11155 |
| This theorem is referenced by: letric 11216 ltnled 11263 leaddsub 11596 mulge0b 11995 nnnle0 12161 nn0n0n1ge2b 12453 znnnlt1 12502 uzwo 12812 qsqueeze 13103 difreicc 13387 fzp1disj 13486 fzneuz 13511 fznuz 13512 uznfz 13513 difelfznle 13545 nelfzo 13567 ssfzoulel 13663 elfzonelfzo 13672 modfzo0difsn 13850 ssnn0fi 13892 discr1 14146 bcval5 14225 swrdnd 14561 swrdnnn0nd 14563 swrdnd0 14564 swrdsbslen 14571 swrdspsleq 14572 pfxnd0 14595 pfxccat3 14640 swrdccat 14641 pfxccat3a 14644 repswswrd 14690 cnpart 15147 absmax 15237 rlimrege0 15486 rpnnen2lem12 16134 alzdvds 16231 algcvgblem 16488 prmndvdsfaclt 16636 pcprendvds 16752 pcdvdsb 16781 pcmpt 16804 prmunb 16826 prmreclem2 16829 prmgaplem5 16967 prmgaplem6 16968 prmlem1 17019 prmlem2 17031 lt6abl 19774 metdseq0 24741 xrhmeo 24842 ovolicc2lem3 25418 itg2seq 25641 dvne0 25914 coeeulem 26127 radcnvlt1 26325 argimgt0 26519 cxple2 26604 ressatans 26842 eldmgm 26930 basellem2 26990 issqf 27044 bpos1 27192 bposlem3 27195 bposlem6 27198 2sqreulem1 27355 2sqreunnlem1 27358 pntpbnd2 27496 ostth2lem4 27545 crctcshwlkn0 29766 crctcsh 29769 eucrctshift 30187 ltflcei 37592 poimirlem4 37608 poimirlem13 37617 poimirlem14 37618 poimirlem15 37619 poimirlem31 37635 mblfinlem1 37641 mbfposadd 37651 itgaddnclem2 37663 ftc1anclem1 37677 ftc1anclem5 37681 dvasin 37688 reabsifnpos 43610 reabsifnneg 43612 icccncfext 45872 stoweidlem14 45999 stoweidlem34 46019 ltnltne 47287 nnsum4primeseven 47788 nnsum4primesevenALTV 47789 ply1mulgsumlem2 48376 |
| Copyright terms: Public domain | W3C validator |