Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lenlt 11053 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
3 | 2 | con2bid 355 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-xr 11013 df-le 11015 |
This theorem is referenced by: letric 11075 ltnled 11122 leaddsub 11451 mulge0b 11845 nnnle0 12006 nn0n0n1ge2b 12301 znnnlt1 12347 uzwo 12651 qsqueeze 12935 difreicc 13216 fzp1disj 13315 fzneuz 13337 fznuz 13338 uznfz 13339 difelfznle 13370 nelfzo 13392 ssfzoulel 13481 elfzonelfzo 13489 modfzo0difsn 13663 ssnn0fi 13705 discr1 13954 bcval5 14032 swrdnd 14367 swrdnnn0nd 14369 swrdnd0 14370 swrdsbslen 14377 swrdspsleq 14378 pfxnd0 14401 pfxccat3 14447 swrdccat 14448 pfxccat3a 14451 repswswrd 14497 cnpart 14951 absmax 15041 rlimrege0 15288 rpnnen2lem12 15934 alzdvds 16029 algcvgblem 16282 prmndvdsfaclt 16430 pcprendvds 16541 pcdvdsb 16570 pcmpt 16593 prmunb 16615 prmreclem2 16618 prmgaplem5 16756 prmgaplem6 16757 prmlem1 16809 prmlem2 16821 lt6abl 19496 metdseq0 24017 xrhmeo 24109 ovolicc2lem3 24683 itg2seq 24907 dvne0 25175 coeeulem 25385 radcnvlt1 25577 argimgt0 25767 cxple2 25852 ressatans 26084 eldmgm 26171 basellem2 26231 issqf 26285 bpos1 26431 bposlem3 26434 bposlem6 26437 2sqreulem1 26594 2sqreunnlem1 26597 pntpbnd2 26735 ostth2lem4 26784 crctcshwlkn0 28186 crctcsh 28189 eucrctshift 28607 ltflcei 35765 poimirlem4 35781 poimirlem13 35790 poimirlem14 35791 poimirlem15 35792 poimirlem31 35808 mblfinlem1 35814 mbfposadd 35824 itgaddnclem2 35836 ftc1anclem1 35850 ftc1anclem5 35854 dvasin 35861 reabsifnpos 41241 reabsifnneg 41243 icccncfext 43428 stoweidlem14 43555 stoweidlem34 43575 ltnltne 44791 nnsum4primeseven 45252 nnsum4primesevenALTV 45253 ply1mulgsumlem2 45728 |
Copyright terms: Public domain | W3C validator |