Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lenlt 10984 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-xr 10944 df-le 10946 |
This theorem is referenced by: letric 11005 ltnled 11052 leaddsub 11381 mulge0b 11775 nnnle0 11936 nn0n0n1ge2b 12231 znnnlt1 12277 uzwo 12580 qsqueeze 12864 difreicc 13145 fzp1disj 13244 fzneuz 13266 fznuz 13267 uznfz 13268 difelfznle 13299 nelfzo 13321 ssfzoulel 13409 elfzonelfzo 13417 modfzo0difsn 13591 ssnn0fi 13633 discr1 13882 bcval5 13960 swrdnd 14295 swrdnnn0nd 14297 swrdnd0 14298 swrdsbslen 14305 swrdspsleq 14306 pfxnd0 14329 pfxccat3 14375 swrdccat 14376 pfxccat3a 14379 repswswrd 14425 cnpart 14879 absmax 14969 rlimrege0 15216 rpnnen2lem12 15862 alzdvds 15957 algcvgblem 16210 prmndvdsfaclt 16358 pcprendvds 16469 pcdvdsb 16498 pcmpt 16521 prmunb 16543 prmreclem2 16546 prmgaplem5 16684 prmgaplem6 16685 prmlem1 16737 prmlem2 16749 lt6abl 19411 metdseq0 23923 xrhmeo 24015 ovolicc2lem3 24588 itg2seq 24812 dvne0 25080 coeeulem 25290 radcnvlt1 25482 argimgt0 25672 cxple2 25757 ressatans 25989 eldmgm 26076 basellem2 26136 issqf 26190 bpos1 26336 bposlem3 26339 bposlem6 26342 2sqreulem1 26499 2sqreunnlem1 26502 pntpbnd2 26640 ostth2lem4 26689 crctcshwlkn0 28087 crctcsh 28090 eucrctshift 28508 ltflcei 35692 poimirlem4 35708 poimirlem13 35717 poimirlem14 35718 poimirlem15 35719 poimirlem31 35735 mblfinlem1 35741 mbfposadd 35751 itgaddnclem2 35763 ftc1anclem1 35777 ftc1anclem5 35781 dvasin 35788 reabsifnpos 41130 reabsifnneg 41132 icccncfext 43318 stoweidlem14 43445 stoweidlem34 43465 ltnltne 44679 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 ply1mulgsumlem2 45616 |
Copyright terms: Public domain | W3C validator |