| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11191 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-xr 11150 df-le 11152 |
| This theorem is referenced by: letric 11213 ltnled 11260 leaddsub 11593 mulge0b 11992 nnnle0 12158 nn0n0n1ge2b 12450 znnnlt1 12499 uzwo 12809 qsqueeze 13100 difreicc 13384 fzp1disj 13483 fzneuz 13508 fznuz 13509 uznfz 13510 difelfznle 13542 nelfzo 13564 ssfzoulel 13660 elfzonelfzo 13669 modfzo0difsn 13850 ssnn0fi 13892 discr1 14146 bcval5 14225 swrdnd 14562 swrdnnn0nd 14564 swrdnd0 14565 swrdsbslen 14572 swrdspsleq 14573 pfxnd0 14596 pfxccat3 14641 swrdccat 14642 pfxccat3a 14645 repswswrd 14691 cnpart 15147 absmax 15237 rlimrege0 15486 rpnnen2lem12 16134 alzdvds 16231 algcvgblem 16488 prmndvdsfaclt 16636 pcprendvds 16752 pcdvdsb 16781 pcmpt 16804 prmunb 16826 prmreclem2 16829 prmgaplem5 16967 prmgaplem6 16968 prmlem1 17019 prmlem2 17031 lt6abl 19807 metdseq0 24770 xrhmeo 24871 ovolicc2lem3 25447 itg2seq 25670 dvne0 25943 coeeulem 26156 radcnvlt1 26354 argimgt0 26548 cxple2 26633 ressatans 26871 eldmgm 26959 basellem2 27019 issqf 27073 bpos1 27221 bposlem3 27224 bposlem6 27227 2sqreulem1 27384 2sqreunnlem1 27387 pntpbnd2 27525 ostth2lem4 27574 crctcshwlkn0 29799 crctcsh 29802 eucrctshift 30223 ltflcei 37658 poimirlem4 37674 poimirlem13 37683 poimirlem14 37684 poimirlem15 37685 poimirlem31 37701 mblfinlem1 37707 mbfposadd 37717 itgaddnclem2 37729 ftc1anclem1 37743 ftc1anclem5 37747 dvasin 37754 reabsifnpos 43736 reabsifnneg 43738 icccncfext 45995 stoweidlem14 46122 stoweidlem34 46142 ltnltne 47409 nnsum4primeseven 47910 nnsum4primesevenALTV 47911 ply1mulgsumlem2 48498 |
| Copyright terms: Public domain | W3C validator |