Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lenlt 10911 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | ancoms 462 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
3 | 2 | con2bid 358 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 class class class wbr 5053 ℝcr 10728 < clt 10867 ≤ cle 10868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-cnv 5559 df-xr 10871 df-le 10873 |
This theorem is referenced by: letric 10932 ltnled 10979 leaddsub 11308 mulge0b 11702 nnnle0 11863 nn0n0n1ge2b 12158 znnnlt1 12204 uzwo 12507 qsqueeze 12791 difreicc 13072 fzp1disj 13171 fzneuz 13193 fznuz 13194 uznfz 13195 difelfznle 13226 nelfzo 13248 ssfzoulel 13336 elfzonelfzo 13344 modfzo0difsn 13516 ssnn0fi 13558 discr1 13806 bcval5 13884 swrdnd 14219 swrdnnn0nd 14221 swrdnd0 14222 swrdsbslen 14229 swrdspsleq 14230 pfxnd0 14253 pfxccat3 14299 swrdccat 14300 pfxccat3a 14303 repswswrd 14349 cnpart 14803 absmax 14893 rlimrege0 15140 rpnnen2lem12 15786 alzdvds 15881 algcvgblem 16134 prmndvdsfaclt 16282 pcprendvds 16393 pcdvdsb 16422 pcmpt 16445 prmunb 16467 prmreclem2 16470 prmgaplem5 16608 prmgaplem6 16609 prmlem1 16661 prmlem2 16673 lt6abl 19280 metdseq0 23751 xrhmeo 23843 ovolicc2lem3 24416 itg2seq 24640 dvne0 24908 coeeulem 25118 radcnvlt1 25310 argimgt0 25500 cxple2 25585 ressatans 25817 eldmgm 25904 basellem2 25964 issqf 26018 bpos1 26164 bposlem3 26167 bposlem6 26170 2sqreulem1 26327 2sqreunnlem1 26330 pntpbnd2 26468 ostth2lem4 26517 crctcshwlkn0 27905 crctcsh 27908 eucrctshift 28326 ltflcei 35502 poimirlem4 35518 poimirlem13 35527 poimirlem14 35528 poimirlem15 35529 poimirlem31 35545 mblfinlem1 35551 mbfposadd 35561 itgaddnclem2 35573 ftc1anclem1 35587 ftc1anclem5 35591 dvasin 35598 reabsifnpos 40917 reabsifnneg 40919 icccncfext 43103 stoweidlem14 43230 stoweidlem34 43250 ltnltne 44464 nnsum4primeseven 44925 nnsum4primesevenALTV 44926 ply1mulgsumlem2 45401 |
Copyright terms: Public domain | W3C validator |