| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11228 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 3 | 2 | con2bid 354 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-xr 11188 df-le 11190 |
| This theorem is referenced by: letric 11250 ltnled 11297 leaddsub 11630 mulge0b 12029 nnnle0 12195 nn0n0n1ge2b 12487 znnnlt1 12536 uzwo 12846 qsqueeze 13137 difreicc 13421 fzp1disj 13520 fzneuz 13545 fznuz 13546 uznfz 13547 difelfznle 13579 nelfzo 13601 ssfzoulel 13697 elfzonelfzo 13706 modfzo0difsn 13884 ssnn0fi 13926 discr1 14180 bcval5 14259 swrdnd 14595 swrdnnn0nd 14597 swrdnd0 14598 swrdsbslen 14605 swrdspsleq 14606 pfxnd0 14629 pfxccat3 14675 swrdccat 14676 pfxccat3a 14679 repswswrd 14725 cnpart 15182 absmax 15272 rlimrege0 15521 rpnnen2lem12 16169 alzdvds 16266 algcvgblem 16523 prmndvdsfaclt 16671 pcprendvds 16787 pcdvdsb 16816 pcmpt 16839 prmunb 16861 prmreclem2 16864 prmgaplem5 17002 prmgaplem6 17003 prmlem1 17054 prmlem2 17066 lt6abl 19809 metdseq0 24776 xrhmeo 24877 ovolicc2lem3 25453 itg2seq 25676 dvne0 25949 coeeulem 26162 radcnvlt1 26360 argimgt0 26554 cxple2 26639 ressatans 26877 eldmgm 26965 basellem2 27025 issqf 27079 bpos1 27227 bposlem3 27230 bposlem6 27233 2sqreulem1 27390 2sqreunnlem1 27393 pntpbnd2 27531 ostth2lem4 27580 crctcshwlkn0 29801 crctcsh 29804 eucrctshift 30222 ltflcei 37595 poimirlem4 37611 poimirlem13 37620 poimirlem14 37621 poimirlem15 37622 poimirlem31 37638 mblfinlem1 37644 mbfposadd 37654 itgaddnclem2 37666 ftc1anclem1 37680 ftc1anclem5 37684 dvasin 37691 reabsifnpos 43615 reabsifnneg 43617 icccncfext 45878 stoweidlem14 46005 stoweidlem34 46025 ltnltne 47293 nnsum4primeseven 47794 nnsum4primesevenALTV 47795 ply1mulgsumlem2 48369 |
| Copyright terms: Public domain | W3C validator |