Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2leaddle2 Structured version   Visualization version   GIF version

Theorem 2leaddle2 47213
Description: If two real numbers are less than a third real number, the sum of the real numbers is less than twice the third real number. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
2leaddle2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (2 · 𝐶)))

Proof of Theorem 2leaddle2
StepHypRef Expression
1 readdcl 11267 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
213adant3 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
3 readdcl 11267 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ∈ ℝ)
43anidms 566 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 + 𝐶) ∈ ℝ)
543ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ∈ ℝ)
6 2re 12367 . . . . . . 7 2 ∈ ℝ
7 remulcl 11269 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
86, 7mpan 689 . . . . . 6 (𝐶 ∈ ℝ → (2 · 𝐶) ∈ ℝ)
983ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
102, 5, 93jca 1128 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ))
1110adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ))
12 id 22 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13123adant3 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
14 id 22 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ)
1514, 14jca 511 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
16153ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
1713, 16jca 511 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
1817adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
19 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 < 𝐶𝐵 < 𝐶))
20 lt2add 11775 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (𝐶 + 𝐶)))
2118, 19, 20sylc 65 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) < (𝐶 + 𝐶))
22 recn 11274 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
23222timesd 12536 . . . . . . 7 (𝐶 ∈ ℝ → (2 · 𝐶) = (𝐶 + 𝐶))
248leidd 11856 . . . . . . 7 (𝐶 ∈ ℝ → (2 · 𝐶) ≤ (2 · 𝐶))
2523, 24eqbrtrrd 5190 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 + 𝐶) ≤ (2 · 𝐶))
26253ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ≤ (2 · 𝐶))
2726adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐶 + 𝐶) ≤ (2 · 𝐶))
2821, 27jca 511 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) < (𝐶 + 𝐶) ∧ (𝐶 + 𝐶) ≤ (2 · 𝐶)))
29 ltletr 11382 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (((𝐴 + 𝐵) < (𝐶 + 𝐶) ∧ (𝐶 + 𝐶) ≤ (2 · 𝐶)) → (𝐴 + 𝐵) < (2 · 𝐶)))
3011, 28, 29sylc 65 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) < (2 · 𝐶))
3130ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (2 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  2c2 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-2 12356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator