MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubeu Structured version   Visualization version   GIF version

Theorem lubeu 18321
Description: Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubval.b 𝐵 = (Base‘𝐾)
lubval.l = (le‘𝐾)
lubval.u 𝑈 = (lub‘𝐾)
lubval.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubval.k (𝜑𝐾𝑉)
lubeleu.s (𝜑𝑆 ∈ dom 𝑈)
Assertion
Ref Expression
lubeu (𝜑 → ∃!𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubeu
StepHypRef Expression
1 lubeleu.s . . 3 (𝜑𝑆 ∈ dom 𝑈)
2 lubval.b . . . 4 𝐵 = (Base‘𝐾)
3 lubval.l . . . 4 = (le‘𝐾)
4 lubval.u . . . 4 𝑈 = (lub‘𝐾)
5 lubval.p . . . 4 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
6 lubval.k . . . 4 (𝜑𝐾𝑉)
72, 3, 4, 5, 6lubeldm 18319 . . 3 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
81, 7mpbid 232 . 2 (𝜑 → (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
98simprd 495 1 (𝜑 → ∃!𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  wss 3917   class class class wbr 5110  dom cdm 5641  cfv 6514  Basecbs 17186  lecple 17234  lubclub 18277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-lub 18312
This theorem is referenced by:  lubval  18322  lubcl  18323  lubprop  18324  joineu  18348
  Copyright terms: Public domain W3C validator