MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubeu Structured version   Visualization version   GIF version

Theorem lubeu 18290
Description: Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubval.b 𝐵 = (Base‘𝐾)
lubval.l = (le‘𝐾)
lubval.u 𝑈 = (lub‘𝐾)
lubval.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubval.k (𝜑𝐾𝑉)
lubeleu.s (𝜑𝑆 ∈ dom 𝑈)
Assertion
Ref Expression
lubeu (𝜑 → ∃!𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubeu
StepHypRef Expression
1 lubeleu.s . . 3 (𝜑𝑆 ∈ dom 𝑈)
2 lubval.b . . . 4 𝐵 = (Base‘𝐾)
3 lubval.l . . . 4 = (le‘𝐾)
4 lubval.u . . . 4 𝑈 = (lub‘𝐾)
5 lubval.p . . . 4 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
6 lubval.k . . . 4 (𝜑𝐾𝑉)
72, 3, 4, 5, 6lubeldm 18288 . . 3 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
81, 7mpbid 232 . 2 (𝜑 → (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓))
98simprd 495 1 (𝜑 → ∃!𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3349  wss 3911   class class class wbr 5102  dom cdm 5631  cfv 6499  Basecbs 17155  lecple 17203  lubclub 18246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-lub 18281
This theorem is referenced by:  lubval  18291  lubcl  18292  lubprop  18293  joineu  18317
  Copyright terms: Public domain W3C validator