![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lubeu | Structured version Visualization version GIF version |
Description: Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubval.b | ⊢ 𝐵 = (Base‘𝐾) |
lubval.l | ⊢ ≤ = (le‘𝐾) |
lubval.u | ⊢ 𝑈 = (lub‘𝐾) |
lubval.p | ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
lubval.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
lubeleu.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Ref | Expression |
---|---|
lubeu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubeleu.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
2 | lubval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | lubval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | lubval.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
5 | lubval.p | . . . 4 ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
6 | lubval.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
7 | 2, 3, 4, 5, 6 | lubeldm 18348 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
8 | 1, 7 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) |
9 | 8 | simprd 494 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃!wreu 3361 ⊆ wss 3944 class class class wbr 5149 dom cdm 5678 ‘cfv 6549 Basecbs 17183 lecple 17243 lubclub 18304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-lub 18341 |
This theorem is referenced by: lubval 18351 lubcl 18352 lubprop 18353 joineu 18377 |
Copyright terms: Public domain | W3C validator |